Virchows Archiv

, Volume 468, Issue 5, pp 579–587 | Cite as

Copy number gain of PIK3CA and MET is associated with poor prognosis in head and neck squamous cell carcinoma

  • Diána Brauswetter
  • Kornél Dános
  • Bianka Gurbi
  • Éva Fruzsina Félegyházi
  • Ede Birtalan
  • Nóra Meggyesházi
  • Tibor Krenács
  • László Tamás
  • István Peták
Original Article

Abstract

The incidence of head and neck squamous cell carcinomas is still growing, and the long-term prognosis of advanced disease remains poor. Only a fraction of head and neck cancers are sensitive to the EGFR-inhibitor cetuximab, which is the only registered targeted therapy available today. In several cancers, gene copy number alterations of MET and PIK3CA have been found to be prognostic and predictive for therapy response. The aim of this study was to systematically analyze in head and neck cancers the pathological characteristics and prognostic significance of copy number changes of MET and PIK3CA genes. MET and PIK3CA copy numbers were analyzed by fluorescence in situ hybridization in tumor samples of 152 patients. Expression of EGFR, p16, and Ki67 was studied by immunohistochemistry. High polysomy of PIK3CA (chromosome 3) was found in 20 % of cases and amplification in 4.5 %. Regarding MET, 35 % of cases showed low or high polysomy of the gene (chromosome 7), while no intra-chromosomal amplification of MET was detected. PIK3CA copy number gain (high polysomy or amplification) was significantly associated with shorter disease-specific survival, larger tumor volume, and lower p16 expression. MET copy number gain (low or high polysomy) in tumors was significantly associated with shorter disease-specific survival and lower level of EGFR. PIK3CA and MET may play an important role in oncogenesis of certain specific subtypes of head and neck cancer. There is an urgent need for the development of novel targeted therapies against these tumors associated with poor prognosis.

Keywords

MET PIK3CA CNG (copy number gain) Head and neck cancer (HNC) 

References

  1. 1.
    Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. doi:10.1002/ijc.29210 CrossRefPubMedGoogle Scholar
  2. 2.
    Leemans CR, Braakhuis BJ, Brakenhoff RH (2011) The molecular biology of head and neck cancer. Nat Rev Cancer 11(1):9–22. doi:10.1038/nrc2982 CrossRefPubMedGoogle Scholar
  3. 3.
    Specenier P, Vermorken JB (2013) Cetuximab: its unique place in head and neck cancer treatment. Biologics 7:77–90. doi:10.2147/BTT.S43628 PubMedPubMedCentralGoogle Scholar
  4. 4.
    Bokemeyer C, Bondarenko I, Hartmann JT, de Braud F, Schuch G, Zubel A, Celik I, Schlichting M, Koralewski P (2011) Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 22(7):1535–1546. doi:10.1093/annonc/mdq632 CrossRefPubMedGoogle Scholar
  5. 5.
    Pirker R, Pereira JR, von Pawel J, Krzakowski M, Ramlau R, Park K, de Marinis F, Eberhardt WE, Paz-Ares L, Storkel S, Schumacher KM, von Heydebreck A, Celik I, O'Byrne KJ (2012) EGFR expression as a predictor of survival for first-line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase 3 FLEX study. Lancet Oncol 13(1):33–42. doi:10.1016/S1470-2045(11)70318-7 CrossRefPubMedGoogle Scholar
  6. 6.
    Licitra L, Mesia R, Rivera F, Remenar E, Hitt R, Erfan J, Rottey S, Kawecki A, Zabolotnyy D, Benasso M, Storkel S, Senger S, Stroh C, Vermorken JB (2011) Evaluation of EGFR gene copy number as a predictive biomarker for the efficacy of cetuximab in combination with chemotherapy in the first-line treatment of recurrent and/or metastatic squamous cell carcinoma of the head and neck: EXTREME study. Ann Oncol 22(5):1078–1087. doi:10.1093/annonc/mdq588 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, Ding M, Bamford S, Cole C, Ward S, Kok CY, Jia M, De T, Teague JW, Stratton MR, McDermott U, Campbell PJ (2015) COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res 43(Database issue):D805–D811. doi:10.1093/nar/gku1075 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Fenic I, Steger K, Gruber C, Arens C, Woenckhaus J (2007) Analysis of PIK3CA and Akt/protein kinase B in head and neck squamous cell carcinoma. Oncol Rep 18(1):253–259PubMedGoogle Scholar
  9. 9.
    Suda T, Hama T, Kondo S, Yuza Y, Yoshikawa M, Urashima M, Kato T, Moriyama H (2012) Copy number amplification of the PIK3CA gene is associated with poor prognosis in non-lymph node metastatic head and neck squamous cell carcinoma. BMC Cancer 12:416. doi:10.1186/1471-2407-12-416 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perrone F, Lampis A, Orsenigo M, Di Bartolomeo M, Gevorgyan A, Losa M, Frattini M, Riva C, Andreola S, Bajetta E, Bertario L, Leo E, Pierotti MA, Pilotti S (2009) PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 20(1):84–90. doi:10.1093/annonc/mdn541 CrossRefPubMedGoogle Scholar
  11. 11.
    de la Rochefordiere A, Kamal M, Floquet A, Thomas L, Petrow P, Petit T, Pop M, Fabbro M, Kerr C, Joly F, Sevin E, Maillard S, Cure H, Weber B, Brunaud C, Minsat M, Gonzague L, Berton-Rigaud D, Aumont M, Gladieff L, Peigneux K, Bernard V, Leroy Q, Bieche I, Margogne A, Nadan AT, Fourchotte V, Diallo A, Asselain B, Plancher C, Armanet S, Beuzeboc P, Scholl S (2015) PIK3CA pathway mutations predictive of poor response following Standard radio chemotherapy +/− Cetuximab in cervical cancer patients. Clin Cancer Res. doi:10.1158/1078-0432.CCR-14-2368 PubMedGoogle Scholar
  12. 12.
    Lesko E, Majka M (2008) The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci 13:1271–1280CrossRefPubMedGoogle Scholar
  13. 13.
    Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11(12):834–848. doi:10.1038/nrm3012 CrossRefPubMedGoogle Scholar
  14. 14.
    Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925. doi:10.1038/nrm1261 CrossRefPubMedGoogle Scholar
  15. 15.
    Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, Del Grammastro M, Sciarrotta MG, Buttitta F, Incarbone M, Toschi L, Finocchiaro G, Destro A, Terracciano L, Roncalli M, Alloisio M, Santoro A, Varella-Garcia M (2009) Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol 27(10):1667–1674. doi:10.1200/JCO.2008.19.1635 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Graziano F, Galluccio N, Lorenzini P, Ruzzo A, Canestrari E, D'Emidio S, Catalano V, Sisti V, Ligorio C, Andreoni F, Rulli E, Di Oto E, Fiorentini G, Zingaretti C, De Nictolis M, Cappuzzo F, Magnani M (2011) Genetic activation of the MET pathway and prognosis of patients with high-risk, radically resected gastric cancer. J Clin Oncol 29(36):4789–4795. doi:10.1200/JCO.2011.36.7706 CrossRefPubMedGoogle Scholar
  17. 17.
    Krumbach R, Schuler J, Hofmann M, Giesemann T, Fiebig HH, Beckers T (2011) Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer 47(8):1231–1243. doi:10.1016/j.ejca.2010.12.019 CrossRefPubMedGoogle Scholar
  18. 18.
    Cappuzzo F, Janne PA, Skokan M, Finocchiaro G, Rossi E, Ligorio C, Zucali PA, Terracciano L, Toschi L, Roncalli M, Destro A, Incarbone M, Alloisio M, Santoro A, Varella-Garcia M (2009) MET increased gene copy number and primary resistance to gefitinib therapy in non-small-cell lung cancer patients. Ann Oncol 20(2):298–304. doi:10.1093/annonc/mdn635 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Lindeman N, Gale CM, Zhao X, Christensen J, Kosaka T, Holmes AJ, Rogers AM, Cappuzzo F, Mok T, Lee C, Johnson BE, Cantley LC, Janne PA (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science (New York, NY) 316(5827):1039–1043. doi:10.1126/science.1141478 CrossRefGoogle Scholar
  20. 20.
    Kawakami H, Okamoto I, Okamoto W, Tanizaki J, Nakagawa K, Nishio K (2014) Targeting MET amplification as a new oncogenic driver. Cancers 6(3):1540–1552. doi:10.3390/cancers6031540 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Schwab R, Petak I, Kollar M, Pinter F, Varkondi E, Kohanka A, Barti-Juhasz H, Schonleber J, Brauswetter D, Kopper L, Urban L (2014) Major partial response to crizotinib, a dual MET/ALK inhibitor, in a squamous cell lung (SCC) carcinoma patient with de novo c-MET amplification in the absence of ALK rearrangement. Lung Cancer 83(1):109–111. doi:10.1016/j.lungcan.2013.10.006 CrossRefPubMedGoogle Scholar
  22. 22.
    Tamás L, Szentkúti G, Eros M, Dános K, Brauswetter D, Szende B, Zsákovics I, Krenács T (2011) Differential biomarker expression in head and neck cancer correlates with anatomical localization. Pathol Oncol Res 17(3):721–727. doi:10.1007/s12253-011-9376-9 CrossRefPubMedGoogle Scholar
  23. 23.
    Szentkuti G, Danos K, Brauswetter D, Kiszner G, Krenacs T, Csako L, Repassy G, Tamas L (2014) Correlations between prognosis and regional biomarker profiles in head and neck squamous cell carcinomas. Pathol Oncol Res. doi:10.1007/s12253-014-9869-4 PubMedGoogle Scholar
  24. 24.
    Lewis JS Jr, Chernock RD (2014) Human papillomavirus and Epstein Barr virus in head and neck carcinomas: suggestions for the new WHO classification. Head Neck Pathol 8(1):50–58. doi:10.1007/s12105-014-0528-6 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lewis JS Jr, Chernock RD, Ma XJ, Flanagan JJ, Luo Y, Gao G, Wang X, El-Mofty SK (2012) Partial p16 staining in oropharyngeal squamous cell carcinoma: extent and pattern correlate with human papillomavirus RNA status. Mod Pathol 25(9):1212–1220. doi:10.1038/modpathol.2012.79 CrossRefPubMedGoogle Scholar
  26. 26.
    Hirsch FR, Varella-Garcia M, Bunn PA Jr, Di Maria MV, Veve R, Bremmes RM, Baron AE, Zeng C, Franklin WA (2003) Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol 21(20):3798–3807. doi:10.1200/JCO.2003.11.069 CrossRefPubMedGoogle Scholar
  27. 27.
    Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn PA Jr, Varella-Garcia M (2005) Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97(9):643–655. doi:10.1093/jnci/dji112 CrossRefPubMedGoogle Scholar
  28. 28.
    Seiwert TY, Jagadeeswaran R, Faoro L, Janamanchi V, Nallasura V, El Dinali M, Yala S, Kanteti R, Cohen EE, Lingen MW, Martin L, Krishnaswamy S, Klein-Szanto A, Christensen JG, Vokes EE, Salgia R (2009) The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res 69(7):3021–3031. doi:10.1158/0008-5472.CAN-08-2881 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lim YC, Kang HJ, Moon JH (2014) C-Met pathway promotes self-renewal and tumorigenecity of head and neck squamous cell carcinoma stem-like cell. Oral Oncol 50(7):633–639. doi:10.1016/j.oraloncology.2014.04.004 CrossRefPubMedGoogle Scholar
  30. 30.
    Tanizaki J, Okamoto I, Sakai K, Nakagawa K (2011) Differential roles of trans-phosphorylated EGFR, HER2, HER3, and RET as heterodimerisation partners of MET in lung cancer with MET amplification. Br J Cancer 105(6):807–813. doi:10.1038/bjc.2011.322 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cappuzzo F, Varella-Garcia M, Finocchiaro G, Skokan M, Gajapathy S, Carnaghi C, Rimassa L, Rossi E, Ligorio C, Di Tommaso L, Holmes AJ, Toschi L, Tallini G, Destro A, Roncalli M, Santoro A, Janne PA (2008) Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients. Br J Cancer 99(1):83–89. doi:10.1038/sj.bjc.6604439 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Turke AB, Zejnullahu K, Wu YL, Song Y, Dias-Santagata D, Lifshits E, Toschi L, Rogers A, Mok T, Sequist L, Lindeman NI, Murphy C, Akhavanfard S, Yeap BY, Xiao Y, Capelletti M, Iafrate AJ, Lee C, Christensen JG, Engelman JA, Janne PA (2010) Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17(1):77–88. doi:10.1016/j.ccr.2009.11.022 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lacroix L, Post SF, Valent A, Melkane AE, Vielh P, Egile C, Castell C, Larois C, Micallef S, Saulnier P, Goulaouic H, Lefebvre AM, Temam S (2014) MET genetic abnormalities unreliable for patient selection for therapeutic intervention in oropharyngeal squamous cell carcinoma. PLoS One 9(1):e84319. doi:10.1371/journal.pone.0084319 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ach T, Zeitler K, Schwarz-Furlan S, Baader K, Agaimy A, Rohrmeier C, Zenk J, Gosau M, Reichert TE, Brockhoff G, Ettl T (2013) Aberrations of MET are associated with copy number gain of EGFR and loss of PTEN and predict poor outcome in patients with salivary gland cancer. Virchows Arch 462(1):65–72. doi:10.1007/s00428-012-1358-0 CrossRefPubMedGoogle Scholar
  35. 35.
    Du L, Shen J, Weems A, Lu SL (2012) Role of phosphatidylinositol-3-kinase pathway in head and neck squamous cell carcinoma. J Oncol 2012:450179. doi:10.1155/2012/450179 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chiosea SI, Grandis JR, Lui VW, Diergaarde B, Maxwell JH, Ferris RL, Kim SW, Luvison A, Miller M, Nikiforova MN (2013) PIK3CA, HRAS and PTEN in human papillomavirus positive oropharyngeal squamous cell carcinoma. BMC Cancer 13:602. doi:10.1186/1471-2407-13-602 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Lui VW, Hedberg ML, Li H, Vangara BS, Pendleton K, Zeng Y, Lu Y, Zhang Q, Du Y, Gilbert BR, Freilino M, Sauerwein S, Peyser ND, Xiao D, Diergaarde B, Wang L, Chiosea S, Seethala R, Johnson JT, Kim S, Duvvuri U, Ferris RL, Romkes M, Nukui T, Kwok-Shing Ng P, Garraway LA, Hammerman PS, Mills GB, Grandis JR (2013) Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov 3(7):761–769. doi:10.1158/2159-8290.CD-13-0103 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Smeets SJ, Braakhuis BJ, Abbas S, Snijders PJ, Ylstra B, van de Wiel MA, Meijer GA, Leemans CR, Brakenhoff RH (2006) Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene 25(17):2558–2564. doi:10.1038/sj.onc.1209275 CrossRefPubMedGoogle Scholar
  39. 39.
    Szabo B, Nelhubel GA, Karpati A, Kenessey I, Jori B, Szekely C, Petak I, Lotz G, Hegedus Z, Hegedus B, Fule T, Dome B, Timar J, Tovari J (2011) Clinical significance of genetic alterations and expression of epidermal growth factor receptor (EGFR) in head and neck squamous cell carcinomas. Oral Oncol 47(6):487–496. doi:10.1016/j.oraloncology.2011.03.020 CrossRefPubMedGoogle Scholar
  40. 40.
    Bernardes VF, Gleber-Netto FO, Sousa SF, Rocha RM, Aguiar MC (2013) EGFR status in oral squamous cell carcinoma: comparing immunohistochemistry, FISH and CISH detection in a case series study. BMJ Open 3(1). doi:10.1136/bmjopen-2012-002077
  41. 41.
    Ang KK, Sturgis EM (2012) Human papillomavirus as a marker of the natural history and response to therapy of head and neck squamous cell carcinoma. Semin Radiat Oncol 22(2):128–142. doi:10.1016/j.semradonc.2011.12.004 CrossRefPubMedGoogle Scholar
  42. 42.
    Cancer Genome Atlas N (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517(7536):576–582. doi:10.1038/nature14129 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Diána Brauswetter
    • 1
  • Kornél Dános
    • 2
  • Bianka Gurbi
    • 1
  • Éva Fruzsina Félegyházi
    • 1
  • Ede Birtalan
    • 2
  • Nóra Meggyesházi
    • 3
  • Tibor Krenács
    • 3
    • 4
  • László Tamás
    • 2
  • István Peták
    • 1
  1. 1.MTA-SE Pathobiochemistry Research GroupBudapestHungary
  2. 2.Department of Oto-Rhino-Laryngology, Head and Neck SurgerySemmelweis UniversityBudapestHungary
  3. 3.Department of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary
  4. 4.MTA-SE Tumor Progression Research GroupBudapestHungary

Personalised recommendations