Advertisement

Virchows Archiv

, Volume 467, Issue 6, pp 701–709 | Cite as

High mobility group B1 and N1 (HMGB1 and HMGN1) are associated with tumor-infiltrating lymphocytes in HER2-positive breast cancers

  • Hee Jin Lee
  • Joo Young Kim
  • In Hye Song
  • In Ah Park
  • Jong Han Yu
  • Jin-Hee Ahn
  • Gyungyub GongEmail author
Original Article

Abstract

Although the prognostic and predictive significance of tumor-infiltrating lymphocytes (TILs) in HER2-positive breast cancers has been established, the drivers of TIL influx remain unclear. We tested whether potential triggers for this response could include high mobility group B1 and N1 (HMGB1 and HMGN1) proteins, which are immunogenic damage-associated molecular pattern molecules. We evaluated TILs and the immunohistochemical expression of HMGB1 and HMGN1 in 447 HER2-positive breast cancer tissues. Normal luminal cells exhibited nuclear expression of HMGB1 and HMBN1. The nuclear and cytoplasmic expression levels of HMG proteins showed a significant inverse correlation (rho = −0.150, p = 0.001 for HMGB1; rho = −0.247, p < 0.001 for HMGN1). Low levels of HMGB1 and HMGN1 nuclear expression were identified in 185 (41.4 %) and 208 (46.5 %) cases, respectively. High levels of cytoplasmic HMGB1 and HMGN1 expression were identified in 107 (23.9 %) and 49 (11.0 %) cases, respectively. High cytoplasmic expression of HMG proteins was significantly associated with a high histological grade, high levels of TILs, peritumoral lymphocytic infiltration, and tertiary lymphoid structures in HER2-positive breast cancer tissues. Tumors with low levels of cytoplasmic HMGB1 and HMGN1 showed significantly lower levels of TILs than those with high levels of each or both HMG proteins. However, the nuclear or cytoplasmic expression of either HMG protein was not found to be significantly associated with survival. High levels of cytoplasmic HMGB1 and HMGN1 protein expression correlated with high levels of TILs in HER2-positive breast cancers. The manipulation of HMGB1 and HMGN1 could represent an immunotherapeutic approach to promote TIL influx into a tumor.

Keywords

Breast cancer Tumor-infiltrating lymphocytes HMGB1 HMGN1 HER2. 

Notes

Acknowledgments

This study was supported by a grant (2015-0169) from the Asan Institute for Life Sciences, Seoul, Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

428_2015_1861_MOESM1_ESM.xlsx (10.6 mb)
ESM 1 (XLSX 10.6 mb)

References

  1. 1.
    Salgado R, Denkert C, Campbell C, Savas P, Nucifero P, Aura C, de Azambuja E, Eidtmann H, Ellis CE, Baselga J, Piccart-Gebhart MJ, Michiels S, Bradbury I, Sotiriou C, Loi S (2015) Tumor-Infiltrating Ly mphocytes and Associations With Pathological Complete Response and Event-Free Survival in HER2-Positive Early-Stage Breast Cancer Treated With Lapatinib and Trastuzumab: A Secondary Analysis of the NeoALTTO Trial. JAMA oncology 1:448–454CrossRefPubMedGoogle Scholar
  2. 2.
    Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn JH, Gong G (2015) Prognostic Significance of Tumor-Infiltrating Lymphocytes and the Tertiary Lymphoid Structures in HER2-Positive Breast Cancer Treated With Adjuvant Trastuzumab. Am J Clin Pathol 144:278–288CrossRefPubMedGoogle Scholar
  3. 3.
    Loi S (2013) Tumor-infiltrating lymphocytes, breast cancer subtypes and therapeutic efficacy. Oncoimmunology 2:e24720PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, de Azambuja E, Quinaux E, Di Leo A, Michiels S, Piccart MJ, Sotiriou C (2013) Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. J Clin Oncol Off J Am Soc Clin Oncol 31:860–867CrossRefGoogle Scholar
  5. 5.
    Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie JJ, Rochaix P, Girard JP (2011) Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res 71:5678–5687CrossRefPubMedGoogle Scholar
  6. 6.
    Goc J, Fridman WH, Sautes-Fridman C, Dieu-Nosjean MC: Characteristics of tertiary lymphoid structures in primary cancers. 2013, 2:e26836Google Scholar
  7. 7.
    Rosen SD (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol 22:129–156CrossRefPubMedGoogle Scholar
  8. 8.
    Martinet L, Filleron T, Le Guellec S, Rochaix P, Garrido I, Girard JP (2013) High endothelial venule blood vessels for tumor-infiltrating lymphocytes are associated with lymphotoxin beta-producing dendritic cells in human breast cancer. J Immunol 191:2001–2008CrossRefPubMedGoogle Scholar
  9. 9.
    Bianchi ME, Agresti A (2005) HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev 15:496–506CrossRefPubMedGoogle Scholar
  10. 10.
    Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P (2012) Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 12:860–875CrossRefPubMedGoogle Scholar
  11. 11.
    Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, Howard OM, Bustin M, Oppenheim JJ (2014) The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res 74:5989–5998CrossRefPubMedGoogle Scholar
  12. 12.
    Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HM GB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179CrossRefPubMedGoogle Scholar
  13. 13.
    Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, Chu WM (2007) A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110:1970–1981PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Bhatelia K, Singh K, Singh R (2014) TLRs: linking inflammation and breast cancer. Cell Signal 26:2350–2357CrossRefPubMedGoogle Scholar
  15. 15.
    Flohr AM, Rogalla P, Meiboom M, Borrmann L, Krohn M, Thode-Halle B, Bullerdiek J (2001) Variation of HMGB1 expression in breast cancer. Anticancer Res 21:3881–3885PubMedGoogle Scholar
  16. 16.
    Stoetzer OJ, Fersching DM, Salat C, Steinkohl O, Gabka CJ, Hamann U, Braun M, Feller AM, Heinemann V, Siegele B, Nagel D, Holdenrieder S (2013) Circulating immunogenic cell death biomarkers HMG B1 and RAGE in breast cancer patients during neoadjuvant chemotherapy. Tumour Biol 34:81–90CrossRefPubMedGoogle Scholar
  17. 17.
    Brezniceanu ML, Volp K, Bosser S, Solbach C, Lichter P, Joos S, Zornig M (2003) HMGB1 inhibits cell death in yeast and mammalian cells and is abundantly expressed in human breast carcinoma. FASEB J 17:1295–1297PubMedGoogle Scholar
  18. 18.
    Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breastcancer. J Clin Oncol Off J Am Soc Clin Oncol 17:1474–1481Google Scholar
  19. 19.
    Wolff AC, Hammond ME, Hicks DG, Dowsett M, McShane LM, Allison KH, Allred DC, Bartlett JM, Bilous M, Fitzgibbons P, Hanna W, Jenkins RB, Mangu PB, Paik S, Perez EA, Press MF, Spears PA, Vance GH, Viale G, Hayes DF: Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. Archives of pathology & laboratory medicine 2013.Google Scholar
  20. 20.
    Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, Wienert S, Van den Eynden G, Baehner FL, Penault-Llorca F, Perez EA, Thompson EA, Symmans WF, Richardson AL, Brock J, Criscitiello C, Bailey H, Ignatiadis M, Floris G, Sparano J, Kos Z, Nielsen T, Rimm DL, Allison KH, Reis-Filho JS, Loibl S, Sotiriou C, Viale G, Badve S, Adams S, Willard-Gallo K, Loi S (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–271CrossRefPubMedGoogle Scholar
  21. 21.
    Lakhani SR EI, Schnitt SJ, Tan PH, van de Vijver MJ, editor: WHO Classification of Tumours of the Breast. 4th ed. Lyon: International Agency for Research on Cancer, 2012.Google Scholar
  22. 22.
    Lee HJ, Park IA, Park SY, Seo AN, Lim B, Chai Y, Song IH, Kim NE, Kim JY, Yu JH, Ahn JH, Gong G (2014) Two histopathologically different diseases: hormone receptor-positive and hormone receptornegative tumors in HER2-positive breast cancer. Breast Cancer Res Treat 145:615–623CrossRefPubMedGoogle Scholar
  23. 23.
    Ozturk N, Singh I, Mehta A, Braun T, Barreto G (2014) HMGA proteins as modulators of chromatin structure during transcriptional activation. Frontiers in cell and developmental biology 2:5PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Kroemer G, Galluzzi L, Kepp O, Zitvogel L (2013) Immunogenic cell death in cancer therapy. Annu Rev Immunol 31:51–72CrossRefPubMedGoogle Scholar
  25. 25.
    Lee H, Shin N, Song M, Kang UB, Yeom J, Lee C, Ahn YH, Yoo JS, Paik YK, Kim H (2010) Analysis of nuclear high mobility group box 1 (HMGB1)-binding proteins in colon cancer cells: clustering with proteins involved in secretion and extranuclear function. J Proteome Res 9:4661–4670CrossRefPubMedGoogle Scholar
  26. 26.
    Yang D, Postnikov YV, Li Y, Tewary P, de la Rosa G, Wei F, Klinman D, Gioannini T, Weiss JP, Furusawa T, Bustin M, Oppenheim JJ (2012) High-mobility group nucleosome-binding protein 1 acts as an alarmin and is critical for lipopolysaccharide-induced immune responses. J Exp Med 209:157–171PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13:1050–9.13CrossRefPubMedGoogle Scholar
  28. 28.
    Shiratsuchi A, Watanabe I, Takeuchi O, Akira S, Nakanishi Y (2004) Inhibitory effect of Toll-like recept or 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J Immunol 172:2039–2047CrossRefPubMedGoogle Scholar
  29. 29.
    Yamazaki T, Hannani D, Poirier-Colame V, Ladoire S, Locher C, Sistigu A, Prada N, Adjemian S, Catani JP, Freudenberg M, Galanos C, Andre F, Kroemer G, Zitvogel L (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ 21:69–78PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kislinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM (2000) Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405:354–360CrossRefPubMedGoogle Scholar
  31. 31.
    Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, Rauvala H (2002) Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62:4805–4811PubMedGoogle Scholar
  32. 32.
    van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA, Griffioen AW (2013) Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene 32:363–374CrossRefPubMedGoogle Scholar
  33. 33.
    Sasahira T, Kirita T, Bhawal UK, Ikeda M, Nagasawa A, Yamamoto K, Kuniyasu H (2007) The expression of receptor for advanced glycation end products is associated with angiogenesis in human oral squamous cell carcinoma. Virchows Arch 450:287–295CrossRefPubMedGoogle Scholar
  34. 34.
    Giavara S, Kosmidou E, Hande MP, Bianchi ME (2005) Morgan A, d’Adda di Fagagna F, Jackson SP:Yeast Nhp6A/B and mammalian Hmgb1 facilitate the maintenance of genome stability. Curr Biol 15:68–72CrossRefPubMedGoogle Scholar
  35. 35.
    Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti G, Grianti P, Pagani M, Bonaldi T, Ragoussis J, Friedman N, Camilloni G, Bianchi ME, Agresti A (2011) Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 9:e1001086PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hee Jin Lee
    • 1
  • Joo Young Kim
    • 2
  • In Hye Song
    • 1
  • In Ah Park
    • 1
  • Jong Han Yu
    • 3
  • Jin-Hee Ahn
    • 4
  • Gyungyub Gong
    • 1
    Email author
  1. 1.Department of Pathology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
  2. 2.Department of Pathology, Korea University Anam HospitalKorea University College of MedicineSeoulSouth Korea
  3. 3.Department of Surgery, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
  4. 4.Department of Oncology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea

Personalised recommendations