Virchows Archiv

, Volume 467, Issue 1, pp 3–7 | Cite as

Wide-field pathology imaging using on-chip microscopy

  • Yibo Zhang
  • Alon Greenbaum
  • Wei Luo
  • Aydogan Ozcan
Review and Perspectives


As the primary imaging tool to assist the examination of pathological samples, the conventional light microscope suffers from limited throughput, relatively high cost, bulky size, lack of portability, and requirement for focus adjustment. All of these drawbacks partially limit the use of light microscopy tools in resource-limited settings. Lens-free on-chip microscopy can help to address these drawbacks and achieve high-throughput pathology slide imaging without using lenses or objectives. Here, we review the performance of this lens-free imaging platform by showing examples of its performance with various samples including normal and sickle-cell disease blood smears and human carcinoma of the breast. This lens-free computational microscopy platform is a promising tool that can serve high-throughput pathology needs especially in resource-poor settings.


Lens-free microscopy On-chip microscopy Digital pathology Telemedicine Shadow imaging Computational imaging 


  1. 1.
    Mills SE (2012) Histology for pathologists. Wolters Kluwer Health/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  2. 2.
    Chen X, Zheng B, Liu H (2011) Optical and digital microscopic imaging techniques and applications in pathology. Anal Cell Pathol Amst 34:5–18. doi: 10.3233/ACP-2011-0006 PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Mudanyali O, Tseng D, Oh C et al (2010) Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10:1417. doi: 10.1039/c000453g PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Greenbaum A, Zhang Y, Feizi A (2014) Wide-field computational imaging of pathology slides using lens-free on-chip microscopy. Sci Transl Med 6:267ra175–267ra175. doi: 10.1126/scitranslmed.3009850 PubMedCrossRefGoogle Scholar
  5. 5.
    Luo W, Greenbaum A, Zhang Y, Ozcan A (2015) Synthetic aperture-based on-chip microscopy. Light Sci Appl 4:e261. doi: 10.1038/lsa.2015.34 CrossRefGoogle Scholar
  6. 6.
    Greenbaum A, Luo W, Su T-W et al (2012) Imaging without lenses: achievements and remaining challenges of wide-field on-chip microscopy. Nat Methods 9:889–895. doi: 10.1038/nmeth.2114 PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Su T-W, Erlinger A, Tseng D, Ozcan A (2010) Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. Anal Chem 82:8307–8312. doi: 10.1021/ac101845q PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Su T-W, Xue L, Ozcan A (2012) High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories. Proc Natl Acad Sci 109:16018–16022. doi: 10.1073/pnas.1212506109 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Bishara W, Sikora U, Mudanyali O et al (2011) Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 11:1276. doi: 10.1039/c0lc00684j PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Greenbaum A, Luo W, Khademhosseinieh B et al (2013) Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy. Sci Rep. doi: 10.1038/srep01717 PubMedCentralGoogle Scholar
  11. 11.
    Bishara W, Su T-W, Coskun AF, Ozcan A (2010) Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt Express 18:11181. doi: 10.1364/OE.18.011181 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Gorocs Z, Ozcan A (2013) On-chip biomedical imaging. IEEE Rev Biomed Eng 6:29–46. doi: 10.1109/RBME.2012.2215847 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Su T-W, Choi I, Feng J et al (2013) Sperm trajectories form chiral ribbons. Sci Rep. doi: 10.1038/srep01664 Google Scholar
  14. 14.
    Greenbaum A, Sikora U, Ozcan A (2012) Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging. Lab Chip 12:1242. doi: 10.1039/c2lc21072j PubMedCrossRefGoogle Scholar
  15. 15.
    Greenbaum A, Akbari N, Feizi A et al (2013) Field-portable pixel super-resolution colour microscope. PLoS ONE 8:e76475. doi: 10.1371/journal.pone.0076475 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Makler TCJ, Palmer AL, Ager M (1998) A review of practical techniques for the diagnosis of malaria. Ann Trop Med Parasitol 92:419–433. doi: 10.1080/00034989859401 PubMedCrossRefGoogle Scholar
  17. 17.
    Orchard G, Nation B (2012) Histopathology. Oxford University Press, OxfordGoogle Scholar
  18. 18.
    Verso ML (1964) The evolution of blood-counting technologies. Med Hist 8:149–158. doi: 10.1017/S0025727300029392 PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Kjeldsberg CR, Perkins SL (1989) Practical diagnosis of hematologic disorders. ASCP Press, ChicagoGoogle Scholar
  20. 20.
    Greenbaum A, Feizi A, Akbari N, Ozcan A (2013) Wide-field computational color imaging using pixel super-resolved on-chip microscopy. Opt Express 21:12469. doi: 10.1364/OE.21.012469 PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Garcia-Sucerquia J (2012) Color lensless digital holographic microscopy with micrometer resolution. Opt Lett 37:1724–1726. doi: 10.1364/OL.37.001724 PubMedCrossRefGoogle Scholar
  22. 22.
    Levin A, Lischinski D, Weiss Y (2004) Colorization using optimization. ACM Trans Graph 23:689. doi: 10.1145/1015706.1015780 CrossRefGoogle Scholar
  23. 23.
    Gonzalez RC (2008) Digital image processing, 3rd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  24. 24.
    Farsiu S, Elad M, Milanfar P (2006) Multiframe demosaicing and super-resolution of color images. IEEE Trans Image Process 15:141–159. doi: 10.1109/TIP.2005.860336 PubMedCrossRefGoogle Scholar
  25. 25.
    Hardie RC, Barnard KJ, Bognar JG et al (1998) High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt Eng 37:247–260. doi: 10.1117/1.601623 CrossRefGoogle Scholar
  26. 26.
    Elad M, Hel-Or Y (2001) A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans Image Process 10:1187–1193. doi: 10.1109/83.935034 PubMedCrossRefGoogle Scholar
  27. 27.
    Greenbaum A, Ozcan A (2012) Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy. Opt Express 20:3129. doi: 10.1364/OE.20.003129 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Allen LJ, Oxley MP (2001) Phase retrieval from series of images obtained by defocus variation. Opt Commun 199:65–75. doi: 10.1016/S0030-4018(01)01556-5 CrossRefGoogle Scholar
  29. 29.
    Almoro P, Pedrini G, Osten W (2006) Complete wavefront reconstruction using sequential intensity measurements of a volume speckle field. Appl Opt 45:8596. doi: 10.1364/AO.45.008596 PubMedCrossRefGoogle Scholar
  30. 30.
    Allen LJ, McBride W, O’Leary NL, Oxley MP (2004) Exit wave reconstruction at atomic resolution. Ultramicroscopy 100:91–104. doi: 10.1016/j.ultramic.2004.01.012 PubMedCrossRefGoogle Scholar
  31. 31.
    Zhang Y, Pedrini G, Osten W, Tiziani H (2003) Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm. Opt Express 11:3234. doi: 10.1364/OE.11.003234 PubMedCrossRefGoogle Scholar
  32. 32.
    Waller L, Tian L, Barbastathis G (2010) Transport of intensity phase-amplitude imaging with higher order intensity derivatives. Opt Express 18:12552–12561. doi: 10.1364/OE.18.012552 PubMedCrossRefGoogle Scholar
  33. 33.
    Jingshan Z, Claus RA, Dauwels J et al (2014) Transport of intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes. Opt Express 22:10661–10674. doi: 10.1364/OE.22.010661 PubMedCrossRefGoogle Scholar
  34. 34.
    Reed Teague M (1983) Deterministic phase retrieval: a Green’s function solution. J Opt Soc Am 73:1434. doi: 10.1364/JOSA.73.001434 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Yibo Zhang
    • 1
    • 2
    • 3
  • Alon Greenbaum
    • 4
  • Wei Luo
    • 1
    • 2
    • 3
  • Aydogan Ozcan
    • 1
    • 2
    • 3
    • 5
  1. 1.Electrical Engineering DepartmentUniversity of CaliforniaLos AngelesUSA
  2. 2.Bioengineering DepartmentUniversity of CaliforniaLos AngelesUSA
  3. 3.California NanoSystems Institute (CNSI)University of CaliforniaLos AngelesUSA
  4. 4.Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUSA
  5. 5.Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations