Advertisement

Virchows Archiv

, Volume 465, Issue 5, pp 509–519 | Cite as

Evaluation of colon cancer histomorphology: a comparison between formalin and PAXgene tissue fixation by an international ring trial

  • Sibylle Gündisch
  • Julia Slotta-Huspenina
  • Paolo Verderio
  • Chiara Maura Ciniselli
  • Sara Pizzamiglio
  • Christina Schott
  • Enken Drecoll
  • Christian Viertler
  • Kurt Zatloukal
  • Marcel Kap
  • Peter Riegman
  • Irene Esposito
  • Katja Specht
  • Gregor Babaryka
  • Martin Asslaber
  • Koppany Bodó
  • Michael den Bakker
  • Jan den Hollander
  • Falko Fend
  • Jens Neumann
  • Simone Reu
  • Aurel Perren
  • Rupert Langer
  • Alessandro Lugli
  • Ingrid Becker
  • Thomas Richter
  • Gian Kayser
  • Annette M. May
  • Fatima Carneiro
  • José Manuel Lopes
  • Leslie Sobin
  • Heinz Höfler
  • Karl-Friedrich BeckerEmail author
Original Article

Abstract

The aim of our study was to evaluate the quality of histo- and cytomorphological features of PAXgene-fixed specimens and their suitability for histomorphological classification in comparison to standard formalin fixation. Fifteen colon cancer tissues were collected, divided into two mirrored samples and either formalin fixed (FFPE) or PAXgene fixed (PFPE) before paraffin embedding. HE- and PAS-stained sections were scanned and evaluated in a blinded, randomised ring trial by 20 pathologists from Europe and the USA using virtual microscopy. The pathologists evaluated histological grading, histological subtype, presence of adenoma, presence of lymphovascular invasion, quality of histomorphology and quality of nuclear features. Statistical analysis revealed that the reproducibility with regard to grading between both fixation methods was rather satisfactory (weighted kappa statistic (k w) = 0.73 (95 % confidence interval (CI), 0.41–0.94)), with a higher agreement between the reference evaluation and the PFPE samples (k w = 0.86 (95 % CI, 0.67–1.00)). Independent from preservation method, inter-observer reproducibility was not completely satisfactory (k w = 0.60). Histomorphological quality parameters were scored equal or better for PFPE than for FFPE samples. For example, overall quality and nuclear features, especially the detection of mitosis, were judged significantly better for PFPE cases. By contrast, significant retraction artefacts were observed more frequently in PFPE samples. In conclusion, our findings suggest that the PAXgene Tissue System leads to excellent preservation of histomorphology and nuclear features of colon cancer tissue and allows routine morphological diagnosis.

Keywords

Histomorphology Molecular diagnostic Colon cancer Tissue preservation Formalin free Reproducibility 

Notes

Acknowledgments

This work was performed within the European consortium Standardisation and Improvement of Generic Pre-analytical Tools and Procedures for In Vitro Diagnostics (SPIDIA; www.spidia.eu), which is funded by the European Union within the Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 222916.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

428_2014_1624_MOESM1_ESM.pdf (31 kb)
Online resource 1 (PDF 31 kb)

References

  1. 1.
    Agresti A (ed) (1990) Categorical data analysis. John Wiley and Sons, New YorkGoogle Scholar
  2. 2.
    Barresi V, Reggiani Bonetti L, Branca G et al (2012) Colorectal carcinoma grading by quantifying poorly differentiated cell clusters is more reproducible and provides more robust prognostic information than conventional grading. Virchows Arch 461:621–628PubMedCrossRefGoogle Scholar
  3. 3.
    Bosetti C, Mclaughlin JK, Tarone RE et al (2008) Formaldehyde and cancer risk: a quantitative review of cohort studies through 2006. Ann Oncol Off J Eur Soc Med Oncol ESMO 19:29–43CrossRefGoogle Scholar
  4. 4.
    Bosman FT, Carneiro F, Hruban RH et al (eds) (2010) WHO classification of tumours of the digestive system. International Agency for Research on Cancer (I A R C)Google Scholar
  5. 5.
    Chandler I, Houlston RS (2008) Interobserver agreement in grading of colorectal cancers—findings from a nationwide Web-based survey of histopathologists. Histopathology 52:494–499PubMedCrossRefGoogle Scholar
  6. 6.
    Chetty R, Gill P, Govender D et al (2012) International study group on rectal cancer regression grading: interobserver variability with commonly used regression grading systems. Hum Pathol 43:1917–1923PubMedCrossRefGoogle Scholar
  7. 7.
    Corletto V, Verderio P, Giardini R et al (1998) Evaluation of residual cellularity and proliferation on preoperatively treated breast cancer: a comparison between image analysis and light microscopy analysis. Anal Cell Pathol 16:83–93PubMedGoogle Scholar
  8. 8.
    Ergin B, Meding S, Langer R et al (2010) Proteomic analysis of PAXgene-fixed tissues. J Proteome Res 9:5188–5196PubMedCrossRefGoogle Scholar
  9. 9.
    Fleiss JL, Levin B, Paik MC (eds) (1981) Statistical methods for rates and proportions. John Wiley and Sons, New YorkGoogle Scholar
  10. 10.
    Groelz D, Sobin L, Branton P et al (2013) Non-formalin fixative versus formalin-fixed tissue: a comparison of histology and RNA quality. Exp Mol Pathol 94:188–194PubMedCrossRefGoogle Scholar
  11. 11.
    Gündisch S, Schott C, Wolff C et al (2013) The PAXgene((R)) tissue system preserves phosphoproteins in human tissue specimens and enables comprehensive protein biomarker research. PLoS One 8:e60638PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Harris EI, Lewin DN, Wang HL et al (2008) Lymphovascular invasion in colorectal cancer: an interobserver variability study. Am J Surg Pathol 32:1816–1821PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Holman CD (1984) Analysis of interobserver variation on a programmable calculator. Am J Epidemiol 120:154–160PubMedGoogle Scholar
  14. 14.
    Italian Network for Quality Assurance of Tumour Biomarkers G (2005) Quality control for histological grading in breast cancer: an Italian experience. Pathologica 97:1–6Google Scholar
  15. 15.
    Jemal A, Center MM, Desantis C et al (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19:1893–1907PubMedCrossRefGoogle Scholar
  16. 16.
    Jemal A, Siegel R, Xu J et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300PubMedCrossRefGoogle Scholar
  17. 17.
    Kap M, Smedts F, Oosterhuis W et al (2011) Histological assessment of PAXgene tissue fixation and stabilization reagents. PLoS One 6:e27704PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kayser K (2012) Introduction of virtual microscopy in routine surgical pathology—a hypothesis and personal view from Europe. Diagn Pathol 7:48PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kim S, Park HK, Jung HY et al (2013) ERG immunohistochemistry as an endothelial marker for assessing lymphovascular invasion. Korean J Pathol 47:355–364PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174PubMedCrossRefGoogle Scholar
  21. 21.
    Nielsen GD, Wolkoff P (2010) Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch Toxicol 84:423–446PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    O’donnell RK, Feldman M, Mick R et al (2008) Immunohistochemical method identifies lymphovascular invasion in a majority of oral squamous cell carcinomas and discriminates between blood and lymphatic vessel invasion. J Histochem Cytochem 56:803–810PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Oetjen J, Aichler M, Trede D et al (2013) MRI-compatible pipeline for three-dimensional MALDI imaging mass spectrometry using PAXgene fixation. J Proteomics 90:52–60PubMedCrossRefGoogle Scholar
  24. 24.
    Paradiso A, Ellis IO, Zito FA et al (2009) Short- and long-term effects of a training session on pathologists’ performance: the INQAT experience for histological grading in breast cancer. J Clin Pathol 62:279–281PubMedCrossRefGoogle Scholar
  25. 25.
    Shaw EC, Hanby AM, Wheeler K et al (2012) Observer agreement comparing the use of virtual slides with glass slides in the pathology review component of the POSH breast cancer cohort study. J Clin Pathol 65:403–408PubMedCrossRefGoogle Scholar
  26. 26.
    Staff S, Kujala P, Karhu R et al (2013) Preservation of nucleic acids and tissue morphology in paraffin-embedded clinical samples: comparison of five molecular fixatives. J Clin Pathol 66:807–810PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas GD, Dixon MF, Smeeton NC et al (1983) Observer variation in the histological grading of rectal carcinoma. J Clin Pathol 36:385–391PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Viertler C, Groelz D, Gündisch S et al (2012) A new technology for stabilization of biomolecules in tissues for combined histological and molecular analyses. J Mol Diagn 14:458–466PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sibylle Gündisch
    • 1
    • 12
  • Julia Slotta-Huspenina
    • 1
  • Paolo Verderio
    • 2
    • 12
  • Chiara Maura Ciniselli
    • 2
    • 12
  • Sara Pizzamiglio
    • 2
    • 12
  • Christina Schott
    • 1
    • 12
  • Enken Drecoll
    • 1
  • Christian Viertler
    • 3
    • 12
  • Kurt Zatloukal
    • 3
    • 12
  • Marcel Kap
    • 4
    • 12
  • Peter Riegman
    • 4
    • 12
  • Irene Esposito
    • 1
  • Katja Specht
    • 1
  • Gregor Babaryka
    • 1
  • Martin Asslaber
    • 3
  • Koppany Bodó
    • 3
  • Michael den Bakker
    • 4
  • Jan den Hollander
    • 4
  • Falko Fend
    • 5
  • Jens Neumann
    • 6
  • Simone Reu
    • 6
  • Aurel Perren
    • 7
  • Rupert Langer
    • 7
  • Alessandro Lugli
    • 7
  • Ingrid Becker
    • 8
  • Thomas Richter
    • 8
  • Gian Kayser
    • 9
  • Annette M. May
    • 9
  • Fatima Carneiro
    • 10
  • José Manuel Lopes
    • 10
  • Leslie Sobin
    • 11
  • Heinz Höfler
    • 1
  • Karl-Friedrich Becker
    • 1
    • 12
    Email author
  1. 1.Institute of PathologyTechnische Universität MünchenMunichGermany
  2. 2.Unit of Medical Statistics, Biometry and Bioinformatics, Fondazione IRCCSIstituto Nazionale dei TumoriMilanItaly
  3. 3.Institute of PathologyMedical University of GrazGrazAustria
  4. 4.Department of PathologyErasmus Medical CenterRotterdamThe Netherlands
  5. 5.Institute of PathologyEberhard-Karls-UniversityTübingenGermany
  6. 6.Institute of PathologyLudwig-Maximilians-Universität MünchenMunichGermany
  7. 7.Institute of PathologyUniversität BernBernSwitzerland
  8. 8.Pathology RosenheimRosenheimGermany
  9. 9.Department of Pathology, Ludwig-Aschoff-HausUniversity Medical Center FreiburgFreiburgGermany
  10. 10.IPATIMUP, Institute of Molecular Pathology and Immunology of the University of PortoUniversity of PortoPortoPortugal
  11. 11.Frederick National Laboratory for Cancer Research, The Cancer Human BiobankNational Cancer InstituteRockvilleUSA
  12. 12.The SPIDIA Consortium

Personalised recommendations