Virchows Archiv

, Volume 464, Issue 4, pp 495–503 | Cite as

In pulmonary lymphangioleiomyomatosis expression of progesterone receptor is frequently higher than that of estrogen receptor

  • Ling Gao
  • Michael M. Yue
  • Jennifer Davis
  • Elisabeth Hyjek
  • Lucia SchugerEmail author
Original Article


Lymphangioleiomyomatosis (LAM) of the lung is a rare low-grade malignancy affecting primarily women of childbearing age. LAM is characterized by the proliferation of SMA and HMB-45 positive spindle-shaped and epithelioid cells throughout the lung in the form of discrete lesions causing cystic destruction and ultimately respiratory insufficiency. LAM occurs sporadically or in patients with tuberous sclerosis complex (TSC) and is etiologically linked to mutations in the TSC1 and TSC2 genes. Although LAM cells are known to express estrogen and progesterone receptors (ER and PR, respectively), their respective expression level was never determined. Therefore, here we measured the immunohistochemical expression of ERs and PRs in a large series of pulmonary LAM cases using the Aperio Spectrum Analysis Platform. Our case series comprised open lung biopsy specimens from 20 LAM patients and lungs explanted during the course of lung transplant from 24 patients. All cases were positive for ER and PR. PR expression was statistically significantly higher than ER in 80 % of the biopsies while ER predominated only in one case. Specimens from explanted cases of LAM had relatively fewer PR-positive nuclei. As a result, PR expression was significantly higher than ER in 38 % of the cases, whereas ER predominated in 33 %. Overall, PR expression predominated in 57 % of cases and ER in 21 %. These data indicate that PR frequently prevails over ER in pulmonary LAM. LAM is unusual in its high PR/ER ratio; other female neoplasms show a definite prevalence of ER. Our findings therefore warrant further study of PR function in LAM.


Lymphangioleiomyomatosis Estrogen receptor Progesterone receptor Biopsy Explanted lung 


Conflict of Interest

The authors declare no conflicts of interest.

Supplementary material

428_2014_1559_Fig7_ESM.jpg (73 kb)
Supplementary Fig. 1

Quantitative image analysis of PR and ER expression in biopsy cases of LAM (n = 20). Percentage of 3+, 2+, and 1+ PR-positive and ER-positive nuclei per case. (JPEG 73 kb)

428_2014_1559_MOESM1_ESM.tif (25.1 mb)
High resolution image (TIFF 25725 kb)
428_2014_1559_Fig8_ESM.jpg (62 kb)
Supplementary Fig. 2

Quantitative image analysis of PR and ER expression in explanted cases of LAM. Percentage of 3+, 2+, and 1+ PR-positive nuclei and ER-positive nuclei per case. (JPEG 62 kb)

428_2014_1559_MOESM2_ESM.tif (21.7 mb)
High resolution image (TIFF 22181 kb)
428_2014_1559_MOESM3_ESM.doc (42 kb)
Table S1 (DOC 42 kb)


  1. 1.
    McCormack FX, Travis WD, Colby TV, Henske EP, Moss J (2012) Lymphangioleiomyomatosis: calling it what it is: a low-grade, destructive, metastasizing neoplasm. Am J Respir Crit Care Med 186:1210–1212PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Harari S, Torre O, Moss J (2011) Lymphangioleiomyomatosis: what do we know and what are we looking for? Eur Respir Rev 20:34–44PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cottin V, Archer F, Leroux C, Mornex JF, Cordier JF (2011) Milestones in lymphangioleiomyomatosis research. Eur Respir Rev 20:3–6PubMedCrossRefGoogle Scholar
  4. 4.
    McCormack FX (2008) Lymphangioleiomyomatosis: a clinical update. Chest 133:507–516PubMedCrossRefGoogle Scholar
  5. 5.
    Sato T, Seyama K, Fujii H, Maruyama H, Setoguchi Y, Iwakami S, Fukuchi Y, Hino O (2002) Mutation analysis of the TSC1 and TSC2 genes in Japanese patients with pulmonary lymphangioleiomyomatosis. J Hum Genet 47:20–28PubMedCrossRefGoogle Scholar
  6. 6.
    Karbowniczek M, Astrinidis A, Balsara BR, Testa JR, Lium JH, Colby TV, McCormack FX, Henske EP (2003) Recurrent lymphangiomyomatosis after transplantation: genetic analyses reveal a metastatic mechanism. Am J Respir Crit Care Med 167:976–982PubMedCrossRefGoogle Scholar
  7. 7.
    Crooks DM, Pacheco-Rodriguez G, DeCastro RM, McCoy JP Jr, Wang JA, Kumaki F, Darling T, Moss J (2004) Molecular and genetic analysis of disseminated neoplastic cells in lymphangioleiomyomatosis. Proc Natl Acad Sci U S A 101:17462–17467PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Ferrans VJ, Yu ZX, Nelson WK, Valencia JC, Tatsuguchi A, Avila NA, Riemenschn W, Matsui K, Travis WD, Moss J (2000) Lymphangioleiomyomatosis (LAM): a review of clinical and morphological features. J Nippon Med Sch 67:311–329PubMedCrossRefGoogle Scholar
  9. 9.
    Matsumoto Y, Horiba K, Usuki J, Chu SC, Ferrans VJ, Moss J (1999) Markers of cell proliferation and expression of melanosomal antigen in lymphangioleiomyomatosis. Am J Respir Cell Mol Biol 21:327–336PubMedCrossRefGoogle Scholar
  10. 10.
    Bonetti F, Chiodera P, Pea M, Martignoni G, Bosi F, Zamboni G, Mariuzzi GM (1993) Transbronchial biopsy in lymphangiomyomatosis of the lung. HMB-45 for diagnosis. Am J Surg Pathol 17:1092–1102PubMedCrossRefGoogle Scholar
  11. 11.
    Hoon V, Thung SN, Kaneko N, Unger PD (1994) HMB-45 reactivity in renal angiomyolipoma and lymphangioleiomyomatosis. Arch Pathol Lab Med 118:732–734PubMedGoogle Scholar
  12. 12.
    Zhe X, Schuger L (2004) Combined smooth muscle and melanocytic differentiation in lymphangioleiomyomatosis. J Histochem Cytochem 52:1537–1542PubMedCrossRefGoogle Scholar
  13. 13.
    Astrinidis A, Henske EP (2005) Tuberous sclerosis complex: linking growth and energy signaling pathways with human disease. Oncogene 24:7475–7481PubMedCrossRefGoogle Scholar
  14. 14.
    Kwiatkowski DJ, Manning BD (2005) Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways. Hum Mol Genet 2:R251–R258CrossRefGoogle Scholar
  15. 15.
    Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355:1345–1356PubMedCrossRefGoogle Scholar
  16. 16.
    Hohman DW, Noghrehkar D, Ratnayake S (2008) Lymphangioleiomyomatosis: A review. Eur J Intern Med 19:319–324PubMedCrossRefGoogle Scholar
  17. 17.
    Chorianopoulos D, Stratakos G (2008) Lymphangioleiomyomatosis and tuberous sclerosis complex. Lung 186:197–207PubMedCrossRefGoogle Scholar
  18. 18.
    Bittman I, Rolf B, Amann G, Lohrs U (2003) Recurrence of lymphangioleiomyomatosis after single lung transplantation: new insights into pathogenesis. Hum Pathol 34:95–98CrossRefGoogle Scholar
  19. 19.
    Strizheva GD, Carsillo T, Kruger WD, Sullivan EJ, Ryu JH, Henske EP (2001) The spectrum of mutations in TSC1 and TSC2 in women with tuberous sclerosis and lymphangiomyomatosis. Am J Respir Crit Care Med 163:253–258PubMedCrossRefGoogle Scholar
  20. 20.
    Carsillo T, Astrinidis A, Henske EP (2000) Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci U S A 97:6085–6090PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al (1997) Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277:805–808PubMedCrossRefGoogle Scholar
  22. 22.
    European chromosome 16 tuberous sclerosis consortium (1993) Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315CrossRefGoogle Scholar
  23. 23.
    Castro AF, Rebhun JF, Clark GG, Quilliam LA (2003) Rheb binds TSC2 and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem 278:32493–32496PubMedCrossRefGoogle Scholar
  24. 24.
    Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, Kozma SC, Hafen E, Bos JL, Thomas G (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11:1457–1466PubMedCrossRefGoogle Scholar
  25. 25.
    Inoki K, Li Y, Xu T, Guan KL (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17:1829–1834PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D et al (2003) Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5:578–581PubMedCrossRefGoogle Scholar
  27. 27.
    Tomasoni R, Mondino A (2011) The tuberous sclerosis complex: balancing proliferation and survival. Biochem Soc Trans 39:466–471PubMedCrossRefGoogle Scholar
  28. 28.
    Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM, Schmithorst VJ, Laor T, Brody AS, Bean J, Salisbury S, Franz DN (2008) Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358:140–151PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    McCormack FX, Inoue Y, Moss J, Singer LG, Strange C, Nakata K (2011) Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 364:1595–1606PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Taveira-DaSilva AM, Hathaway O, Stylianou M, Moss J (2011) Changes in lung function and chylous effusions in patients with lymphangioleiomyomatosis treated with sirolimus. Ann Intern Med 154:797–805PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Cohen MM, Freyer AM, Johnson SR (2009) Pregnancy experiences among women with lymphangioleiomyomatosis. Respir Med 103:766–772PubMedCrossRefGoogle Scholar
  32. 32.
    Saleh Gargari S, Hantoushzadae S, Mohamadi F, Jafar-Abadi M (2009) Pregnancy complicated by lymphangioleiomyomatosis. Arch Iran Med 12:182–185PubMedGoogle Scholar
  33. 33.
    Yano S (2002) Exacerbation of pulmonary lymphangioleiomyomatosis by exogenous oestrogen used for infertility treatment. Thorax 57:1085–1086PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Matsui K, Takeda K, Yu ZX, Valencia J, Travis WD, Moss J, Ferrans VJ (2000) Downregulation of estrogen and progesterone receptors in the abnormal smooth muscle cells in pulmonary lymphangioleiomyomatosis following therapy. An immunohistochemical study. Am J Respir Crit Care Med 161:1002–1009PubMedCrossRefGoogle Scholar
  35. 35.
    Matsui K, Tatsuguchi A, Valencia J, Zx Y, Bechtle J, Beasley MB, Avila N, Travis WD, Moss J, Ferrans VJ (2000) Extrapulmonary lymphangioleiomyomatosis (LAM): clinicopathologic features in 22 cases. Hum Pathol 31:1242–1248PubMedCrossRefGoogle Scholar
  36. 36.
    Flavin RJ, Cook J, Fiorentino M, Bailey D, Brown M, Loda MF (2011) β-Catenin is a useful adjunct immunohistochemical marker for the diagnosis of pulmonary lymphangioleiomyomatosis. Am J Clin Pathol 135:776–782PubMedCrossRefGoogle Scholar
  37. 37.
    Wakamiya T, Sugita Y, Hashiguchi M, Iwasaka T, Tokunaga O (2011) Tuberous sclerosis complex associated with papillary serous carcinoma of the peritoneum, lymphangioleiomyomatosis, and angiomyolipoma. Case Report Pathol 2011:564260Google Scholar
  38. 38.
    Mitani K, Kumasaka T, Takemura H, Hayashi T, Gunji Y, Kunogi M, Akiyoshi T, Takahashi K, Suda K, Seyama K (2009) Cytologic, immunocytochemical and ultrastructural characterization of lymphangioleiomyomatosis cell clusters in chylous effusions of patients with lymphangioleiomyomatosis. Acta Cytol 53:402–409PubMedCrossRefGoogle Scholar
  39. 39.
    Pan LH, Ito H, Kurose A, Yamauchi K, Inoue H, Sawai T (2003) Pulmonary lymphangioleiomyomatosis: a case report with immunohistochemical details and DNA analysis. Tohoku J Exp Med 199:119–126PubMedCrossRefGoogle Scholar
  40. 40.
    Yu JJ, Robb VA, Morrison TA, Ariazi EA, Karbowniczek M, Astrinidis A, Wang C, Hernandez-Cuebas L, Seeholzer LF, Nicolas E, Hensley H, Jordan VC, Walker CL, Henske EP (2009) Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells. Proc Natl Acad Sci U S A 106:2635–2640PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Denoo X, Hermans G, Degives R, Foidart JM (1999) Successful treatment of pulmonary lymphangioleiomyomatosis with progestins: a case report. Chest 115:276–279PubMedCrossRefGoogle Scholar
  42. 42.
    Baldi BG, Medeiros Junior P, Pimenta SP, Lopes RI, Kairalla RA, Carvalho CR (2011) Evolution of pulmonary function after treatment with goserelin in patients with lymphangioleiomyomatosis. J Bras Pneumol 37:375–379PubMedCrossRefGoogle Scholar
  43. 43.
    Harari S, Cassandro R, Chiodini I, Taveira-DaSilva AM, Moss J (2008) Effect of a gonadotrophin-releasing hormone analogue on lung function in lymphangioleiomyomatosis. Chest 133:448–454PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Schiavina M, Contini P, Fabiani A, Cinelli F, Di Scioscio V, Zompatori M, Campidelli C, Pileri SA (2007) Efficacy of hormonal manipulation in lymphangioleiomyomatosis. A 20-year-experience in 36 patients. Sarcoidosis Vasc Diffuse Lung Dis 24:39–50PubMedGoogle Scholar
  45. 45.
    Taveira-DaSilva AM, Stylianou MP, Hedin CJ, Hathaway O, Moss J (2004) Decline in lung function in patients with lymphangioleiomyomatosis treated with or without progesterone. Chest 126:1867–1874PubMedCrossRefGoogle Scholar
  46. 46.
    Urban T, Lazor R, Lacronique J, Murris M, Labrune S, Valeyre D, Cordier JF (1999) Pulmonary lymphangioleiomyomatosis. A study of 69 patients. Groupe d'Etudes et de Recherche sur les Maladies "Orphelines" Pulmonaires (GERM"O"P). Medicine (Baltimore) 78:321–337CrossRefGoogle Scholar
  47. 47.
    Liang YJ, Hao Q, Zhang HM, Wu YZ, Wang JD (2012) Insulin-like growth factors in endometrioid adenocarcinoma: correlation with clinico-pathological features and estrogen receptor expression. BMC Cancer 12:262PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Mufudza C, Sorofa W, Chiyaka ET (2012) Assessing the effects of estrogen on the dynamics of breast cancer. Comput Math Methods Med 2012:473572PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Badri KR, Gao L, Hyjek E, Schuger N, Schuger L, Qin W, Chekaluk Y, Kwiatkowski DJ, Zhe X (2013) Exonic mutations of TSC2/TSC1 are common but not seen in all sporadic pulmonary lymphangioleiomyomatosis (LAM). Am J Respir Crit Care Med 187:663–665PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Yu J, Astrinidis A, Howard S, Henske EP (2004) Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. Am J Physiol Lung Cell Mol Physiol 286:L694–L700PubMedCrossRefGoogle Scholar
  51. 51.
    Ueng SH, Liu HP, Wu YC, Tsai YH, Lin HC, Lin MC, Lim KE, Huang SF (2004) Pulmonary lymphangioleiomyomatosis: a clinicopathological analysis of ten cases. Chang Gung Med J 27:201–209PubMedGoogle Scholar
  52. 52.
    Laurinavicius A, Laurinaviciene A, Ostapenko V, Dasevicius D, Jarmalaite S, Lazutka J (2012) Immunohistochemistry profiles of breast ductal carcinoma: factor analysis of digital image analysis data. Diagn Pathol 7:27PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    van der Horst PH, Wang Y, Vandenput I, Kühne LC, Ewing PC, van Ijcken WF, van der Zee M, Amant F, Burger CW, Blok LJ (2012) Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer. PLoS One 7:e30840PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Wang Y, van der Zee M, Fodde R, Blok LJ (2010) Wnt/Β-Catenin and sex hormone signaling in endometrial homeostasis and cancer. Oncotarget 1:674–684PubMedCentralPubMedGoogle Scholar
  55. 55.
    Wang Y, Hanifi-Moghaddam P, Hanekamp EE, Kloosterboer HJ, Franken P, Veldscholte J, van Doorn HC, Ewing PC, Kim JJ, Grootegoed JA, Burger CW, Fodde R, Blok LJ (2009) Progesterone inhibition of Wnt/beta-catenin signaling in normal endometrium and endometrial cancer. Clin Cancer Res 15:5784–5793PubMedCrossRefGoogle Scholar
  56. 56.
    Lanari C, Lamb CA, Fabris VT, Helguero LA, Soldati R, Bottino MC, Giulianelli S, Cerliani JP, Wargon V, Molinolo A (2009) The MPA mouse breast cancer model: evidence for a role of progesterone receptors in breast cancer. Endocr Relat Cancer 16:333–350PubMedCrossRefGoogle Scholar
  57. 57.
    Rossouw JE, Anderson GL, Prentice RL, LaCroix AZ, Kooperberg C, Stefanick ML, Jackson RD, Beresford SA, Howard BV, Johnson KC, Kotchen JM, Ockene J, Writing Group for the Women’s Health Initiative Investigators (2002) Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women's Health Initiative randomized controlled trial. JAMA 288:321–333PubMedCrossRefGoogle Scholar
  58. 58.
    Beral V, Million Women Study Collaborators (2003) Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362:419–427PubMedCrossRefGoogle Scholar
  59. 59.
    Axlund SD, Sartorius CA (2012) Progesterone regulation of stem and progenitor cells in normal and malignant breast. Mol Cell Endocrinol 357:71–79PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Daniel AR, Hagan CR, Lange CA (2011) Progesterone receptor action: defining a role in breast cancer. Expert Rev Endocrinol Metab 6:359–369PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Riggio M, Polo ML, Blaustein M, Colman-Lerner A, Lüthy I, Lanari C, Novaro V (2012) PI3K/AKT pathway regulates phosphorylation of steroid receptors, hormone independence and tumor differentiation in breast cancer. Carcinogenesis 33:509–518PubMedCrossRefGoogle Scholar
  62. 62.
    Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, Mills GB, Lee AV (2003) Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol 17:575–588PubMedCrossRefGoogle Scholar
  63. 63.
    Grunt TW, Mariani GL (2012) Targeting the PI3K/AKT/mTOR pathway in breast cancer. Curr Cancer Drug Targets 21:177–184Google Scholar
  64. 64.
    Xie Y, Wang YL, Yu L, Hu Q, Ji L, Zhang Y, Liao QP (2011) Metformin promotes progesterone receptor expression via inhibition of mammalian target of rapamycin (mTOR) in endometrial cancer cells. J Steroid Biochem Mol Biol 126:113–120PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ling Gao
    • 1
  • Michael M. Yue
    • 1
  • Jennifer Davis
    • 1
  • Elisabeth Hyjek
    • 1
  • Lucia Schuger
    • 1
    Email author
  1. 1.Department of PathologyThe University of ChicagoChicagoUSA

Personalised recommendations