Advertisement

Virchows Archiv

, Volume 464, Issue 3, pp 283–291 | Cite as

Molecular tests as prognostic factors in breast cancer

  • Marc J. van de VijverEmail author
Invited Review

Abstract

In early breast cancer, prognostic tests are used to guide decisions on adjuvant systemic hormonal therapy, chemotherapy and targeted therapy treatment. This has led to large research efforts to identify novel prognostic markers in breast cancer. At present, the tissue factors used to guide treatment of breast cancer patients are tumor size, lymph node status, histologic grade, ER status, PR status, and HER2 status; in addition, multigene-expression-based prognostic tests are rapidly emerging. While identification of prognostic gene expression profiles has been successful, it has not been possible yet to identify robust clinically useful predictors of response to systemic treatment. As a result of rapid advances in technology and bioinformatics, it has become possible to analyze large series of breast carcinomas using high-throughput genetic techniques, including whole genome sequence analysis and gene expression profiling. These genomic studies will lead to the development of additional prognostic and predictive tissue-based tests. The most important aspects of the currently used tissue-based prognostic and predictive tests and the research in this area are reviewed.

Keywords

Breast cancer Molecular pathology Prognostic marker Predictive marker 

Notes

Conflict of interest

Pathology advisory boards: Hoffmann La Roche and Genomic Health

Research funding: Hoffmann La Roche

Patents: co-inventor of 70-gene prognosis profile for breast cancer

References

  1. 1.
    Goldhirsch A, Wood WC, Coates AS et al (2011) Strategies for subtypes—dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wolff AC, Hammond ME, Hicks DG et al (2013) Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol 31:3997–4013PubMedCrossRefGoogle Scholar
  3. 3.
    Hammond ME, Hayes DF, Dowsett M et al (2010) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28:2784–2795PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19:403–410Google Scholar
  5. 5.
    Lende TH, Janssen EA, Gudlaugsson E et al (2011) In patients younger than age 55 years with lymph node-negative breast cancer, proliferation by mitotic activity index is prognostically superior to adjuvant! J Clin Oncol 29:852–858PubMedCrossRefGoogle Scholar
  6. 6.
    Cuzick J, Dowsett M, Pineda S et al (2011) Prognostic value of a combined estrogen receptor, progesterone receptor, Ki-67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol 29:4273–4278PubMedCrossRefGoogle Scholar
  7. 7.
    Curtis C, Shah SP, Chin SF et al (2012) The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486:346–352PubMedCentralPubMedGoogle Scholar
  8. 8.
    Paik S, Shak S, Tang G et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 351:2817–2826PubMedCrossRefGoogle Scholar
  9. 9.
    Simpson JF, Quan DE, O’Malley F et al (1997) Amplification of CCND1 and expression of its protein product, cyclin D1, in ductal carcinoma in situ of the breast. Am J Pathol 151:161–168PubMedCentralPubMedGoogle Scholar
  10. 10.
    Albain KS, Barlow WE, Shak S et al (2010) Prognostic and predictive value of the 21-gene recurrence score assay in postmenopausal women with node-positive, oestrogen-receptor-positive breast cancer on chemotherapy: a retrospective analysis of a randomised trial. Lancet Oncol 11:55–65PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Dowsett M, Cuzick J, Wale C et al (2010) Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a TransATAC study. J Clin Oncol 28:1829–1834PubMedCrossRefGoogle Scholar
  12. 12.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedCrossRefGoogle Scholar
  13. 13.
    Mook S, Schmidt MK, Viale G et al (2009) The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat 116:295–302PubMedCrossRefGoogle Scholar
  14. 14.
    Bueno-de-Mesquita JM, van Harten WH, Retel VP et al (2007) Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER). Lancet Oncol 8:1079–1087PubMedCrossRefGoogle Scholar
  15. 15.
    Drukker CA, Bueno-de-Mesquita JM, Retel VP et al (2013) A prospective evaluation of a breast cancer prognosis signature in the observational RASTER study. Int J Cancer 133:929–936PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Perou CM, Sorlie T, Eisen MB et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752PubMedCrossRefGoogle Scholar
  17. 17.
    Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Weigelt B, Mackay A, A’Hern R et al (2010) Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol 11:339–349PubMedCrossRefGoogle Scholar
  20. 20.
    Parker JS, Mullins M, Cheang MC et al (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27:1160–1167PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Dowsett M, Sestak I, Lopez-Knowles E et al (2013) Comparison of PAM50 risk of recurrence score with oncotype DX and IHC4 for predicting risk of distant recurrence after endocrine therapy. J Clin Oncol 31:2783–2790PubMedCrossRefGoogle Scholar
  22. 22.
    Sotiriou C, Wirapati P, Loi S et al (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. J Natl Cancer Inst 98:262–272PubMedCrossRefGoogle Scholar
  23. 23.
    Toussaint J, Sieuwerts AM, Haibe-Kains B et al (2009) Improvement of the clinical applicability of the genomic grade index through a qRT-PCR test performed on frozen and formalin-fixed paraffin-embedded tissues. BMC Genomics 10:424PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Filipits M, Rudas M, Jakesz R et al (2011) A new molecular predictor of distant recurrence in ER-positive, HER2-negative breast cancer adds independent information to conventional clinical risk factors. Clin Cancer Res 17:6012–6020PubMedCrossRefGoogle Scholar
  25. 25.
    Dubsky P, Filipits M, Jakesz R et al (2013) EndoPredict improves the prognostic classification derived from common clinical guidelines in ER-positive, HER2-negative early breast cancer. Ann Oncol 24:640–647PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Dubsky P, Brase JC, Jakesz R et al (2013) The EndoPredict score provides prognostic information on late distant metastases in ER+/. Br J Cancer. doi: 10.1038/bjc.2013.671 PubMedCentralGoogle Scholar
  27. 27.
    Ma XJ, Wang Z, Ryan PD et al (2004) A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5:607–616PubMedCrossRefGoogle Scholar
  28. 28.
    Jansen MP, Sieuwerts AM, Look MP et al (2007) HOXB13 to IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol 25:662–668PubMedCrossRefGoogle Scholar
  29. 29.
    Ma XJ, Salunga R, Dahiya S et al (2008) A five-gene molecular grade index and HOXB13:IL17BR are complementary prognostic factors in early stage breast cancer. Clin Cancer Res 14:2601–2608PubMedCrossRefGoogle Scholar
  30. 30.
    de Ronde JJ, Hannemann J, Halfwerk H et al (2010) Concordance of clinical and molecular breast cancer subtyping in the context of preoperative chemotherapy response. Breast Cancer Res Treat 119:119–126PubMedCrossRefGoogle Scholar
  31. 31.
    Robinson DR, Wu YM, Vats P et al (2013) Activating ESR1 mutations in hormone-resistant metastatic breast cancer. Nat Genet. doi: 10.1038/ng.2823 Google Scholar
  32. 32.
    Toy W, Shen Y, Won H, Green B, Sakr RA, Will M, Li Z, Gala K, Fanning S, King TA, Hudis C, Chen D, Taran T, Hortobagyi G, Greene G, Berger M, Baselga J, Chandarlapaty S et al (2013) ESR1 ligand-binding domain mutations in hormone-resistant breast cancer. Nat Genet 45:1439–1445PubMedCrossRefGoogle Scholar
  33. 33.
    Gupta RA, Shah N, Wang KC et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464:1071–1076PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Dvinge H, Git A, Graf S et al (2013) The shaping and functional consequences of the microRNA landscape in breast cancer. Nature 497:378–382PubMedCrossRefGoogle Scholar
  35. 35.
    Shah SP, Morin RD, Khattra J et al (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461:809–813PubMedCrossRefGoogle Scholar
  36. 36.
    Ding L, Ellis MJ, Li S et al (2010) Genome remodeling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464:993–998PubMedCrossRefGoogle Scholar
  38. 38.
    Banerji S, Cibulskis K, Rangel-Escareno C et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486:405–409PubMedCrossRefGoogle Scholar
  39. 39.
    Ellis MJ, Ding L, Shen D et al (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature 486:353–360PubMedCentralPubMedGoogle Scholar
  40. 40.
    Stephens PJ, Tarpey PS, Davies H et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486:400–404PubMedCentralPubMedGoogle Scholar
  41. 41.
    Shah SP, Roth A, Goya R et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486:395–399PubMedGoogle Scholar
  42. 42.
    Nik-Zainal S, Alexandrov LB, Wedge DC et al (2012) Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–993PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Nik-Zainal S, Van LP, Wedge DC et al (2012) The life history of 21 breast cancers. Cell 149:994–1007PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Chang JC, Wooten EC, Tsimelzon A et al (2003) Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer. Lancet 362:362–369PubMedCrossRefGoogle Scholar
  45. 45.
    Ayers M, Symmans WF, Stec J et al (2004) Gene expression profiles predict complete pathologic response to neoadjuvant paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide chemotherapy in breast cancer. J Clin Oncol 22:2284–2293PubMedCrossRefGoogle Scholar
  46. 46.
    Iwao-Koizumi K, Matoba R, Ueno N et al (2005) Prediction of docetaxel response in human breast cancer by gene expression profiling. J Clin Oncol 23:422–431PubMedCrossRefGoogle Scholar
  47. 47.
    Hannemann J, Oosterkamp HM, Bosch CA et al (2005) Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 23:3331–3342PubMedCrossRefGoogle Scholar
  48. 48.
    Gianni L, Zambetti M, Clark K et al (2005) Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer. J Clin Oncol 23:7265–7277PubMedCrossRefGoogle Scholar
  49. 49.
    Hess KR, Anderson K, Symmans WF et al (2006) Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24:4236–4244PubMedCrossRefGoogle Scholar
  50. 50.
    Thuerigen O, Schneeweiss A, Toedt G et al (2006) Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer. J Clin Oncol 24:1839–1845PubMedCrossRefGoogle Scholar
  51. 51.
    Cleator S, Tsimelzon A, Ashworth A et al (2006) Gene expression patterns for doxorubicin (Adriamycin) and cyclophosphamide (cytoxan) (AC) response and resistance. Breast Cancer Res Treat 95:229–233PubMedCrossRefGoogle Scholar
  52. 52.
    Chang JC, Makris A, Gutierrez MC et al (2008) Gene expression patterns in formalin-fixed, paraffin-embedded core biopsies predict docetaxel chemosensitivity in breast cancer patients. Breast Cancer Res Treat 108:233–240PubMedCrossRefGoogle Scholar
  53. 53.
    Farmer P, Bonnefoi H, Anderle P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74PubMedCrossRefGoogle Scholar
  54. 54.
    Tabchy A, Valero V, Vidaurre T et al (2010) Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer. Clin Cancer Res 16:5351–5361PubMedCrossRefGoogle Scholar
  55. 55.
    Lin Y, Lin S, Watson M et al (2010) A gene expression signature that predicts the therapeutic response of the basal-like breast cancer to neoadjuvant chemotherapy. Breast Cancer Res Treat 123:691–699PubMedCrossRefGoogle Scholar
  56. 56.
    Lee JK, Coutant C, Kim YC et al (2010) Prospective comparison of clinical and genomic multivariate predictors of response to neoadjuvant chemotherapy in breast cancer. Clin Cancer Res 16:711–718PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Bonnefoi H, Underhill C, Iggo R et al (2009) Predictive signatures for chemotherapy sensitivity in breast cancer: are they ready for use in the clinic? Eur J Cancer 45:1733–1743PubMedCrossRefGoogle Scholar
  58. 58.
    Cancer Genome Atlas Network (2012) Comprehensive molecular portraits of human breast tumours. Nature 490:61–70CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PathologyAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations