Virchows Archiv

, Volume 464, Issue 2, pp 191–196 | Cite as

Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma

  • Carl Ludwig BehnesEmail author
  • Felix Bremmer
  • Bernhard Hemmerlein
  • Arne Strauss
  • Philipp Ströbel
  • Heinz-Joachim Radzun
Original Article


Tumor-associated macrophages (TAMs) play a key role in cancer development. Especially, the immunosuppressive M2 phenotype is associated with increased tumor growth, invasiveness and metastasis. The differentiation of macrophages to the alternative phenotype M2 is mediated, inter alia, by macrophage colony-stimulating factor (M-CSF). Papillary renal cell carcinoma (RCC) represents a rare tumor type which, based upon histological criteria, can be subdivided into two subtypes (I and II), of which type II is associated with poor prognosis. In both subtypes, typically, a dense infiltrate of macrophages is found. In the present study, the expression of CD68, CD163, M-CSF, Ki-67, and CD31 was examined in 30 type I and 30 type II papillary RCCs (n = 60). Both types of papillary RCCs contained an equally dense infiltrate of CD68-positive macrophages. Nearly all macrophages in papillary RCC type II expressed CD163, a characteristic for M2 macrophages. In type I papillary RCC, less than 30 % of macrophages expressed CD163. Furthermore, tumor cells in type II papillary RCC expressed significantly more M-CSF and showed increased (Ki-67 expression defined) proliferative activity in comparison with type I papillary RCC. In addition, the (CD31 defined) capillary density was higher in type II than in type I papillary RCC. A dense infiltrate of M2 phenotype TAM and high M-CSF expression in tumor cells are key features of type II papillary RCC. These findings might explain why the prognosis of papillary RCC type II is worse than that of type I.


Papillary renal cell carcinoma Tumor-associated macrophages M2 macrophages M-CSF 


Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. doi: 10.1016/S0140-6736(00)04046-0 PubMedCrossRefGoogle Scholar
  2. 2.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. doi: 10.1038/nature07205 PubMedCrossRefGoogle Scholar
  3. 3.
    Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35. doi: 10.1038/nri978 PubMedCrossRefGoogle Scholar
  4. 4.
    Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555PubMedCrossRefGoogle Scholar
  5. 5.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25(12):677–686. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  6. 6.
    Mosser DM (2003) The many faces of macrophage activation. J Leukoc Biol 73(2):209–212PubMedCrossRefGoogle Scholar
  7. 7.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. doi: 10.1016/j.cell.2010.03.014 PubMedCrossRefGoogle Scholar
  8. 8.
    Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266. doi: 10.1016/j.cell.2006.01.007 PubMedCrossRefGoogle Scholar
  9. 9.
    Mantovani A, Sica A (2010) Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol 22(2):231–237. doi: 10.1016/j.coi.2010.01.009 PubMedCrossRefGoogle Scholar
  10. 10.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78. doi: 10.1038/nrc1256 PubMedCrossRefGoogle Scholar
  11. 11.
    Komohara Y, Hasita H, Ohnishi K, Fujiwara Y, Suzu S, Eto M, Takeya M (2011) Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci 102(7):1424–1431. doi: 10.1111/j.1349-7006.2011.01945.x PubMedCrossRefGoogle Scholar
  12. 12.
    Mydlo JH, Bard RH (1987) Analysis of papillary renal adenocarcinoma. Urology 30(6):529–534PubMedCrossRefGoogle Scholar
  13. 13.
    Delahunt B, Eble JN (1997) Papillary renal cell carcinoma: a clinicopathologic and immunohistochemical study of 105 tumors. Mod Pathol 10(6):537–544PubMedGoogle Scholar
  14. 14.
    Moch H, Gasser T, Amin MB, Torhorst J, Sauter G, Mihatsch MJ (2000) Prognostic utility of the recently recommended histologic classification and revised TNM staging system of renal cell carcinoma: a Swiss experience with 588 tumors. Cancer 89(3):604–614PubMedCrossRefGoogle Scholar
  15. 15.
    Pignot G, Elie C, Conquy S, Vieillefond A, Flam T, Zerbib M, Debre B, Amsellem-Ouazana D (2007) Survival analysis of 130 patients with papillary renal cell carcinoma: prognostic utility of type 1 and type 2 subclassification. Urology 69(2):230–235. doi: 10.1016/j.urology.2006.09.052 PubMedCrossRefGoogle Scholar
  16. 16.
    Solinas G, Germano G, Mantovani A, Allavena P (2009) Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. J Leukoc Biol 86(5):1065–1073. doi: 10.1189/jlb.0609385 PubMedCrossRefGoogle Scholar
  17. 17.
    Webster WS, Lohse CM, Thompson RH, Dong H, Frigola X, Dicks DL, Sengupta S, Frank I, Leibovich BC, Blute ML, Cheville JC, Kwon ED (2006) Mononuclear cell infiltration in clear-cell renal cell carcinoma independently predicts patient survival. Cancer 107(1):46–53. doi: 10.1002/cncr.21951 PubMedCrossRefGoogle Scholar
  18. 18.
    Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629PubMedGoogle Scholar
  19. 19.
    Shabo I, Stal O, Olsson H, Dore S, Svanvik J (2008) Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer 123(4):780–786. doi: 10.1002/ijc.23527 PubMedCrossRefGoogle Scholar
  20. 20.
    Yoshikawa K, Mitsunaga S, Kinoshita T, Konishi M, Takahashi S, Gotohda N, Kato Y, Aizawa M, Ochiai A (2012) Impact of tumor-associated macrophages on invasive ductal carcinoma of the pancreas head. Cancer Sci 103(11):2012–2020. doi: 10.1111/j.1349-7006.2012.02411.x PubMedCrossRefGoogle Scholar
  21. 21.
    Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, Graf T, Pollard JW, Segall J, Condeelis J (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64(19):7022–7029. doi: 10.1158/0008-5472.CAN-04-1449 PubMedCrossRefGoogle Scholar
  22. 22.
    Kacinski BM (1995) CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med 27(1):79–85PubMedCrossRefGoogle Scholar
  23. 23.
    Smith HO, Anderson PS, Kuo DY, Goldberg GL, DeVictoria CL, Boocock CA, Jones JG, Runowicz CD, Stanley ER, Pollard JW (1995) The role of colony-stimulating factor 1 and its receptor in the etiopathogenesis of endometrial adenocarcinoma. Clin Cancer Res 1(3):313–325PubMedGoogle Scholar
  24. 24.
    Scholl SM, Pallud C, Beuvon F, Hacene K, Stanley ER, Rohrschneider L, Tang R, Pouillart P, Lidereau R (1994) Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst 86(2):120–126PubMedCrossRefGoogle Scholar
  25. 25.
    Nowicki A, Szenajch J, Ostrowska G, Wojtowicz A, Wojtowicz K, Kruszewski AA, Maruszynski M, Aukerman SL, Wiktor-Jedrzejczak W (1996) Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma. Int J Cancer J Int cancer 65(1):112–119. doi: 10.1002/(SICI)1097-0215(19960103)65:1<112::AID-IJC19>3.0.CO;2-I CrossRefGoogle Scholar
  26. 26.
    Kawamura K, Komohara Y, Takaishi K, Katabuchi H, Takeya M (2009) Detection of M2 macrophages and colony-stimulating factor 1 expression in serous and mucinous ovarian epithelial tumors. Pathol Int 59(5):300–305. doi: 10.1111/j.1440-1827.2009.02369.x PubMedCrossRefGoogle Scholar
  27. 27.
    O’Sullivan C, Lewis CE, Harris AL, McGee JO (1993) Secretion of epidermal growth factor by macrophages associated with breast carcinoma. Lancet 342(8864):148–149PubMedCrossRefGoogle Scholar
  28. 28.
    Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178(5):2623–2629PubMedCrossRefGoogle Scholar
  29. 29.
    Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727. doi: 10.1016/j.ejca.2006.01.003 PubMedCrossRefGoogle Scholar
  30. 30.
    Mano Y, Aishima S, Fujita N, Tanaka Y, Kubo Y, Motomura T, Taketomi A, Shirabe K, Maehara Y, Oda Y (2013) Tumor-associated macrophage promotes tumor progression via STAT3 signaling in hepatocellular carcinoma. Pathobiology 80(3):146–154. doi: 10.1159/000346196 PubMedCrossRefGoogle Scholar
  31. 31.
    Takaishi K, Komohara Y, Tashiro H, Ohtake H, Nakagawa T, Katabuchi H, Takeya M (2010) Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation. Cancer Sci 101(10):2128–2136. doi: 10.1111/j.1349-7006.2010.01652.x PubMedCrossRefGoogle Scholar
  32. 32.
    Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23(5):953–964. doi: 10.1200/JCO.2005.12.172 PubMedCrossRefGoogle Scholar
  33. 33.
    Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66(2):605–612. doi: 10.1158/0008-5472.CAN-05-4005 PubMedCrossRefGoogle Scholar
  34. 34.
    Lewis JS, Landers RJ, Underwood JC, Harris AL, Lewis CE (2000) Expression of vascular endothelial growth factor by macrophages is up-regulated in poorly vascularized areas of breast carcinomas. J Pathol 192(2):150–158. doi: 10.1002/1096-9896(2000)9999:9999<::AID-PATH687>3.0.CO;2-G PubMedCrossRefGoogle Scholar
  35. 35.
    Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N (2002) Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch 440(6):583–588. doi: 10.1007/s004280100458 PubMedCrossRefGoogle Scholar
  36. 36.
    Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, Bicknell R, Taylor M, Gatter KC, Harris AL (2002) Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res 62(5):1326–1329PubMedGoogle Scholar
  37. 37.
    Murdoch C, Giannoudis A, Lewis CE (2004) Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 104(8):2224–2234. doi: 10.1182/blood-2004-03-1109 PubMedCrossRefGoogle Scholar
  38. 38.
    Leek RD, Landers RJ, Harris AL, Lewis CE (1999) Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. Br J Cancer 79(5–6):991–995. doi: 10.1038/sj.bjc.6690158 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Aharinejad S, Abraham D, Paulus P, Abri H, Hofmann M, Grossschmidt K, Schafer R, Stanley ER, Hofbauer R (2002) Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res 62(18):5317–5324PubMedGoogle Scholar
  40. 40.
    De Palma M, Murdoch C, Venneri MA, Naldini L, Lewis CE (2007) Tie2-expressing monocytes: regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 28(12):519–524. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  41. 41.
    Huang H, Lai JY, Do J, Liu D, Li L, Del Rosario J, Doppalapudi VR, Pirie-Shepherd S, Levin N, Bradshaw C, Woodnutt G, Lappe R, Bhat A (2011) Specifically targeting angiopoietin-2 inhibits angiogenesis, Tie2-expressing monocyte infiltration, and tumor growth. Clin Cancer Res 17(5):1001–1011. doi: 10.1158/1078-0432.CCR-10-2317 PubMedCrossRefGoogle Scholar
  42. 42.
    Balkwill F, Mantovani A (2010) Cancer and inflammation: implications for pharmacology and therapeutics. Clin Pharmacol Ther 87(4):401–406. doi: 10.1038/clpt.2009.312 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Carl Ludwig Behnes
    • 1
    • 4
    Email author
  • Felix Bremmer
    • 1
  • Bernhard Hemmerlein
    • 1
    • 3
  • Arne Strauss
    • 2
  • Philipp Ströbel
    • 1
  • Heinz-Joachim Radzun
    • 1
  1. 1.Department of PathologyUniversity of GöttingenGöttingenGermany
  2. 2.Department of UrologyUniversity of GöttingenGöttingenGermany
  3. 3.Department of PathologyKrefeldGermany
  4. 4.Department of PathologyUniversity of GöttingenGöttingenGermany

Personalised recommendations