Virchows Archiv

, Volume 464, Issue 3, pp 333–346

Prognostic biomarkers in thyroid cancer

  • Paula Soares
  • Ricardo Celestino
  • Miguel Melo
  • Elsa Fonseca
  • Manuel Sobrinho-Simões
Invited Review


Thyroid carcinomas represent a challenging problem from the prognostic standpoint. Despite an overall good prognosis of the most frequent endocrine malignancy, 10–15 % of papillary thyroid carcinomas (PTCs) turn refractory to radioactive iodine therapy. The increased incidence of thyroid cancer has led to the search for solid prognostic biomarkers that predict the behaviour of these tumours. Clinical and histopathological prognostic factors remain the only safe elements to be used for diagnosis and prognosis of patients with thyroid tumours. Despite the huge amount of genetic information of thyroid tumours, very few new markers revealed diagnostic or prognostic value per se. BRAF mutation can have some value if associated to other clinico-pathological parameters, or in the particular setting of iodine refractory tumours. Others can prove interesting in the future as predictive biomarkers of therapeutic response, but more studies are needed to confirm these potential biomarkers.


Thyroid Cancer Biomarker Prognostic 


  1. 1.
    Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see commetns]. Cancer 83(12):2638–2648. doi:10.1002/(SICI)1097-0142(19981215)83:12<2638::AID-CNCR31>3.0.CO;2–1 PubMedGoogle Scholar
  2. 2.
    Gilliland FD, Hunt WC, Morris DM, Key CR (1997) Prognostic factors for thyroid carcinoma. A population-based study of 15,698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991. Cancer 79(3):564–573PubMedGoogle Scholar
  3. 3.
    Elisei R, Molinaro E, Agate L, Bottici V, Masserini L, Ceccarelli C, Lippi F, Grasso L, Basolo F, Bevilacqua G, Miccoli P, Di Coscio G, Vitti P, Pacini F, Pinchera A (2010) Are the clinical and pathological features of differentiated thyroid carcinoma really changed over the last 35 years? Study on 4187 patients from a single Italian institution to answer this question. J Clin Endocrinol Metab 95(4):1516–1527. doi:10.1210/jc.2009-1536 PubMedGoogle Scholar
  4. 4.
    Russell MA, Gilbert EF, Jaeschke WF (1975) Prognostic features of thyroid cancer. A long-term followup of 68 cases. Cancer 36(2):553–559PubMedGoogle Scholar
  5. 5.
    Hay ID, Thompson GB, Grant CS, Bergstralh EJ, Dvorak CE, Gorman CA, Maurer MS, McIver B, Mullan BP, Oberg AL, Powell CC, van Heerden JA, Goellner JR (2002) Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients. World J Surg 26(8):879–885. doi:10.1007/s00268-002-6612-1 PubMedGoogle Scholar
  6. 6.
    Leboulleux S, Hartl D, Baudin E, Schlumberger M (2012) Differentiated thyroid cancer in childhood. Bull du Cancer 99(11):1093–1099. doi:10.1684/bdc.2012.1645 Google Scholar
  7. 7.
    Schlumberger M, Challeton C, De Vathaire F, Travagli JP, Gardet P, Lumbroso JD, Francese C, Fontaine F, Ricard M, Parmentier C (1996) Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med 37(4):598–605PubMedGoogle Scholar
  8. 8.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. Ca: A Cancer J Clin 62(1):10–29. doi:10.3322/caac.20138 Google Scholar
  9. 9.
    Kilfoy BA, Devesa SS, Ward MH, Zhang Y, Rosenberg PS, Holford TR, Anderson WF (2009) Gender is an age-specific effect modifier for papillary cancers of the thyroid gland. Cancer Epidemiol Biomarkers Prev 18(4):1092–1100. doi:10.1158/1055-9965.EPI-08-0976 PubMedCentralPubMedGoogle Scholar
  10. 10.
    Nilubol N, Zhang L, Kebebew E (2013) Multivariate analysis of the relationship between male sex, disease-specific survival, and features of tumor aggressiveness in thyroid cancer of follicular cell origin. Thyroid 23(6):695–702. doi:10.1089/thy.2012.0269 PubMedGoogle Scholar
  11. 11.
    Mazeh H, Sippel RS (2013) Familial nonmedullary thyroid carcinoma. Thyroid. doi:10.1089/thy.2013.0079 PubMedGoogle Scholar
  12. 12.
    Uchino S, Noguchi S, Kawamoto H, Yamashita H, Watanabe S, Yamashita H, Shuto S (2002) Familial nonmedullary thyroid carcinoma characterized by multifocality and a high recurrence rate in a large study population. World J Surg 26(8):897–902. doi:10.1007/s00268-002-6615-y PubMedGoogle Scholar
  13. 13.
    Mazeh H, Benavidez J, Poehls JL, Youngwirth L, Chen H, Sippel RS (2012) In patients with thyroid cancer of follicular cell origin, a family history of nonmedullary thyroid cancer in one first-degree relative is associated with more aggressive disease. Thyroid 22(1):3–8. doi:10.1089/thy.2011.0192 PubMedGoogle Scholar
  14. 14.
    Robenshtok E, Tzvetov G, Grozinsky-Glasberg S, Shraga-Slutzky I, Weinstein R, Lazar L, Serov S, Singer J, Hirsch D, Shimon I, Benbassat C (2011) Clinical characteristics and outcome of familial nonmedullary thyroid cancer: a retrospective controlled study. Thyroid 21(1):43–48. doi:10.1089/thy.2009.0406 PubMedGoogle Scholar
  15. 15.
    Ito Y, Kakudo K, Hirokawa M, Fukushima M, Yabuta T, Tomoda C, Inoue H, Kihara M, Higashiyama T, Uruno T, Takamura Y, Miya A, Kobayashi K, Matsuzuka F, Miyauchi A (2009) Biological behavior and prognosis of familial papillary thyroid carcinoma. Surgery 145(1):100–105. doi:10.1016/j.surg.2008.08.004 PubMedGoogle Scholar
  16. 16.
    Cunha LL, Ferreira RC, Marcello MA, Vassallo J, Ward LS (2011) Clinical and pathological implications of concurrent autoimmune thyroid disorders and papillary thyroid cancer. J Thyroid Res 2011:387062. doi:10.4061/2011/387062 PubMedCentralPubMedGoogle Scholar
  17. 17.
    Dvorkin S, Robenshtok E, Hirsch D, Strenov Y, Shimon I, Benbassat CA (2013) Differentiated thyroid cancer is associated with less aggressive disease and better outcome in patients with coexisting Hashimotos thyroiditis. J Clin Endocrinol Metab 98(6):2409–2414. doi:10.1210/jc.2013-1309 PubMedGoogle Scholar
  18. 18.
    Belfiore A, Russo D, Vigneri R, Filetti S (2001) Graves' disease, thyroid nodules and thyroid cancer. Clin Endocrinol (Oxf) 55(6):711–718Google Scholar
  19. 19.
    Pellegriti G, Mannarino C, Russo M, Terranova R, Marturano I, Vigneri R, Belfiore A (2013) Increased mortality in patients with differentiated thyroid cancer associated with Graves' disease. J Clin Endocrinol Metab 98(3):1014–1021. doi:10.1210/jc.2012-2843 PubMedGoogle Scholar
  20. 20.
    McLeod DS, Watters KF, Carpenter AD, Ladenson PW, Cooper DS, Ding EL (2012) Thyrotropin and thyroid cancer diagnosis: a systematic review and dose–response meta-analysis. J Clin Endocrinol Metab 97(8):2682–2692. doi:10.1210/jc.2012-1083 PubMedGoogle Scholar
  21. 21.
    McLeod DS, Cooper DS, Ladenson PW, Ain KB, Brierley J, Fein HG, Haugen BRM, Jonklaas J, Magner J, Ross DD, Young MSM, Steward D, Maxon H, Sherman SI (2013) Prognosis of differentiated thyroid cancer in relation to serum TSH and thyroglobulin antibody status at time of diagnosis. Thyroid. doi:10.1089/thy.2013.0062 PubMedGoogle Scholar
  22. 22.
    Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, Sturgeon C (2007) Extent of surgery affects survival for papillary thyroid cancer. Ann Surg 246(3):375–381. doi:10.1097/SLA.0b013e31814697d9, discussion 381–374PubMedCentralPubMedGoogle Scholar
  23. 23.
    Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL, Tuttle RM (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11):1167–1214. doi:10.1089/thy.2009.0110 PubMedGoogle Scholar
  24. 24.
    Pacini F, Schlumberger M, Dralle H, Elisei R, Smit JW, Wiersinga W (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154(6):787–803. doi:10.1530/eje.1.02158 PubMedGoogle Scholar
  25. 25.
    Bonnet S, Hartl D, Leboulleux S, Baudin E, Lumbroso JD, Al Ghuzlan A, Chami L, Schlumberger M, Travagli JP (2009) Prophylactic lymph node dissection for papillary thyroid cancer less than 2 cm: implications for radioiodine treatment. J Clin Endocrinol Metab 94(4):1162–1167. doi:10.1210/jc.2008-1931 PubMedGoogle Scholar
  26. 26.
    Roh JL, Park JY, Park CI (2007) Total thyroidectomy plus neck dissection in differentiated papillary thyroid carcinoma patients: pattern of nodal metastasis, morbidity, recurrence, and postoperative levels of serum parathyroid hormone. Ann Surg 245(4):604–610. doi:10.1097/01.sla.0000250451.59685.67 PubMedCentralPubMedGoogle Scholar
  27. 27.
    Lang BH, Ng SH, Lau L, Cowling B, Wong KP, Wan KY (2013) A systematic review and meta-analysis of prophylactic central neck dissection on short-term locoregional recurrence in papillary thyroid carcinoma after total thyroidectomy. Thyroid. doi:10.1089/thy.2012.0608 PubMedGoogle Scholar
  28. 28.
    Webb RC, Howard RS, Stojadinovic A, Gaitonde DY, Wallace MK, Ahmed J, Burch HB (2012) The utility of serum thyroglobulin measurement at the time of remnant ablation for predicting disease-free status in patients with differentiated thyroid cancer: a meta-analysis involving 3947 patients. J Clin Endocrinol Metab 97(8):2754–2763. doi:10.1210/jc.2012-1533 PubMedGoogle Scholar
  29. 29.
    Melo M, Costa G, Ribeiro C, Carrilho F, Martins MJ, da Rocha AG, Sobrinho-Simoes M, Carvalheiro M, Soares P (2013) Stimulated thyroglobulin at recombinant human TSH-aided ablation predicts disease-free status one year later. J Clin Endocrinol Metab 98(11): 4364–4372. doi:10.1210/jc.2013-2267 PubMedGoogle Scholar
  30. 30.
    Robenshtok E, Grewal RK, Fish S, Sabra M, Tuttle RM (2013) A low postoperative nonstimulated serum thyroglobulin level does not exclude the presence of radioactive iodine avid metastatic foci in intermediate-risk differentiated thyroid cancer patients. Thyroid 23(4):436–442. doi:10.1089/thy.2012.0352 PubMedGoogle Scholar
  31. 31.
    Hay ID, Grant CS, Taylor WF, McConahey WM (1987) Ipsilateral lobectomy versus bilateral lobar resection in papillary thyroid carcinoma: a retrospective analysis of surgical outcome using a novel prognostic scoring system. Surgery 102(6):1088–1095PubMedGoogle Scholar
  32. 32.
    Cady B (1998) Papillary carcinoma of the thyroid gland: treatment based on risk group definition. Surg Oncol clin N Am 7(4):633–644PubMedGoogle Scholar
  33. 33.
    Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS (1993) Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery 114(6):1050–1057, discussion 1057–1058PubMedGoogle Scholar
  34. 34.
    DeGroot LJ, Kaplan EL, McCormick M, Straus FH (1990) Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab 71(2):414–424PubMedGoogle Scholar
  35. 35.
    Sherman SI, Brierley JD, Sperling M, Ain KB, Bigos ST, Cooper DS, Haugen BR, Ho M, Klein I, Ladenson PW, Robbins J, Ross DS, Specker B, Taylor T, Maxon HR 3rd (1998) Prospective multicenter study of thyroiscarcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group. Cancer 83(5):1012–1021PubMedGoogle Scholar
  36. 36.
    Verburg FA, Mader U, Kruitwagen CL, Luster M, Reiners C (2010) A comparison of prognostic classification systems for differentiated thyroid carcinoma. Clin Endocrinol (Oxf) 72(6):830–838. doi:10.1111/j.1365-2265.2009.03734.x Google Scholar
  37. 37.
    Eloy C, Santos J, Soares P, Sobrinho-Simoes M (2011) The preeminence of growth pattern and invasiveness and the limited influence of BRAF and RAS mutations in the occurrence of papillary thyroid carcinoma lymph node metastases. Virchows Arch 459(3):265–276. doi:10.1007/s00428-011-1133-7 PubMedGoogle Scholar
  38. 38.
    DeLellis RA, Lloyd RV, Heitz PU, Eng C (2004) WHO classification of tumours. Pathology and genetics of tumours of endocrine organs. IARC Press, LyonGoogle Scholar
  39. 39.
    Rosai J, Carcangiu ML, DeLellis R (1992) Tumors of the thyroid gland: atlas of tumor pathology. Armed Forces Institute of Pathology. Washington, DCGoogle Scholar
  40. 40.
    Soares P, Cameselle-Teijeiro J, Sobrinho-Simoes M (1994) Immunohistochemical detection of p53 in differentiated, poorly differentiated and undifferentiated carcinomas of the thyroid. Histopathology 24(3):205–210PubMedGoogle Scholar
  41. 41.
    Soares P, Lima J, Preto A, Castro P, Vinagre J, Celestino R, Couto JP, Prazeres H, Eloy C, Maximo V, Sobrinho-Simoes M (2011) Genetic alterations in poorly differentiated and undifferentiated thyroid carcinomas. Curr Genomics 12(8):609–617. doi:10.2174/138920211798120853 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Ezzat S, Sarti DA, Cain DR, Braunstein GD (1994) Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med 154(16):1838–1840PubMedGoogle Scholar
  43. 43.
    Papini E, Guglielmi R, Gharib H, Misischi I, Graziano F, Chianelli M, Crescenzi A, Bianchini A, Valle D, Bizzarri G (2011) Ultrasound-guided laser ablation of incidental papillary thyroid microcarcinoma: a potential therapeutic approach in patients at surgical risk. Thyroid 21(8):917–920. doi:10.1089/thy.2010.0447 PubMedCentralPubMedGoogle Scholar
  44. 44.
    Brown RL, de Souza JA, Cohen EE (2011) Thyroid cancer: burden of illness and management of disease. J Cancer 2:193–199PubMedCentralPubMedGoogle Scholar
  45. 45.
    Mazzaferri EL, Jhiang SM (1994) Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med 97(5):418–428PubMedGoogle Scholar
  46. 46.
    Xing M (2013) Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 13(3):184–199. doi:10.1038/nrc3431 PubMedCentralPubMedGoogle Scholar
  47. 47.
    Kondo T, Ezzat S, Asa SL (2006) Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6(4):292–306. doi:10.1038/nrc1836 PubMedGoogle Scholar
  48. 48.
    Xing M (2005) BRAF mutation in thyroid cancer. Endocrinol Relat Cancer 12(2):245–262. doi:10.1677/erc.1.0978 Google Scholar
  49. 49.
    Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE (2003) BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab 88(11):5399–5404PubMedGoogle Scholar
  50. 50.
    Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, Janakiraman M, Solit D, Knauf JA, Tuttle RM, Ghossein RA, Fagin JA (2009) Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 69(11):4885–4893. doi:10.1158/0008-5472.CAN-09-0727 PubMedCentralPubMedGoogle Scholar
  51. 51.
    Soares P, Trovisco V, Rocha AS, Feijao T, Rebocho AP, Fonseca E, Vieira de Castro I, Cameselle-Teijeiro J, Cardoso-Oliveira M, Sobrinho-Simoes M (2004) BRAF mutations typical of papillary thyroid carcinoma are more frequently detected in undifferentiated than in insular and insular-like poorly differentiated carcinomas. Virchows Arch 444(6):572–576. doi:10.1007/s00428-004-1018-0 PubMedGoogle Scholar
  52. 52.
    Kim TH, Park YJ, Lim JA, Ahn HY, Lee EK, Lee YJ, Kim KW, Hahn SK, Youn YK, Kim KH, Cho BY, Park do J (2012) The association of the BRAF(V600E) mutation with prognostic factors and poor clinical outcome in papillary thyroid cancer: a meta-analysis. Cancer 118(7):1764–1773. doi:10.1002/cncr.26500 PubMedGoogle Scholar
  53. 53.
    Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Puxeddu E, Fugazzola L, Czarniecka A, Jarzab B, O'Neill CJ, Sywak MS, Lam AK, Riesco-Eizaguirre G, Santisteban P, Nakayama H, Tufano RP, Pai SI, Zeiger MA, Westra WH, Clark DP, Clifton-Bligh R, Sidransky D, Ladenson PW, Sykorova V (2013) Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309(14):1493–1501. doi:10.1001/jama.2013.3190 PubMedCentralPubMedGoogle Scholar
  54. 54.
    Xing M (2010) Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol 321(1):86–93. doi:10.1016/j.mce.2009.10.012 PubMedCentralPubMedGoogle Scholar
  55. 55.
    Soares P, Sobrinho-Simoes M (2011) Cancer: small papillary thyroid cancers—is BRAF of prognostic value? Nat Rev Endocrinol 7(1):9–10. doi:10.1038/nrendo.2010.213 PubMedGoogle Scholar
  56. 56.
    Patel KN (2013) Genetic mutations, molecular markers and future directions in research. Oral Oncol 49(7):711–721. doi:10.1016/j.oraloncology.2013.03.437 PubMedGoogle Scholar
  57. 57.
    Mian C, Barollo S, Pennelli G, Pavan N, Rugge M, Pelizzo MR, Mazzarotto R, Casara D, Nacamulli D, Mantero F, Opocher G, Busnardo B, Girelli ME (2008) Molecular characteristics in papillary thyroid cancers (PTCs) with no 131I uptake. Clin Endocrinol (Oxf) 68(1):108–116. doi:10.1111/j.1365-2265.2007.03008.x Google Scholar
  58. 58.
    Riesco-Eizaguirre G, Gutierrez-Martinez P, Garcia-Cabezas MA, Nistal M, Santisteban P (2006) The oncogene BRAF V600E is associated with a high risk of recurrence and less differentiated papillary thyroid carcinoma due to the impairment of Na+/I targeting to the membrane. Endocrinol Relat Cancer 13(1):257–269. doi:10.1677/erc.1.01119 Google Scholar
  59. 59.
    Sabra MM, Dominguez JM, Grewal RK, Larson SM, Ghossein RA, Tuttle RM, Fagin JA (2013) Clinical outcomes and molecular profile of differentiated thyroid cancers with radioiodine-avid distant metastases. J Clin Endocrinol Metab 98(5):E829–E836. doi:10.1210/jc.2012-3933 PubMedGoogle Scholar
  60. 60.
    Liu D, Hu S, Hou P, Jiang D, Condouris S, Xing M (2007) Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin Cancer Res 13(4):1341–1349. doi:10.1158/1078-0432.CCR-06-1753 PubMedGoogle Scholar
  61. 61.
    Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, Bollag G, Kolesnick R, Thin TH, Rosen N, Zanzonico P, Larson SM, Refetoff S, Ghossein R, Fagin JA (2011) Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Investig 121(12):4700–4711. doi:10.1172/JCI46382 PubMedCentralPubMedGoogle Scholar
  62. 62.
    Sobrinho-Simoes M, Preto A, Rocha AS, Castro P, Maximo V, Fonseca E, Soares P (2005) Molecular pathology of well-differentiated thyroid carcinomas. Virchows Arch 447(5):787–793. doi:10.1007/s00428-005-0065-5 PubMedGoogle Scholar
  63. 63.
    Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V, Vieira de Castro I, Cardoso-de-Oliveira M, Fonseca E, Soares P, Sobrinho-Simoes M (2006) PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91(1):213–220PubMedGoogle Scholar
  64. 64.
    Di Cristofaro J, Marcy M, Vasko V, Sebag F, Fakhry N, Wynford-Thomas D, De Micco C (2006) Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum Pathol 37(7):824–830. doi:10.1016/j.humpath.2006.01.030 PubMedGoogle Scholar
  65. 65.
    Santarpia L, Myers JN, Sherman SI, Trimarchi F, Clayman GL, El-Naggar AK (2010) Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer 116(12):2974–2983. doi:10.1002/cncr.25061 PubMedGoogle Scholar
  66. 66.
    Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE (2003) Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71–77PubMedGoogle Scholar
  67. 67.
    Volante M, Rapa I, Gandhi M, Bussolati G, Giachino D, Papotti M, Nikiforov YE (2009) RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J Clin Endocrinol Metab 94(12):4735–4741. doi:10.1210/jc.2009-1233 PubMedGoogle Scholar
  68. 68.
    Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, Wu R, Carcangiu ML, Costa J, Tallini G (2003) ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21(17):3226–3235. doi:10.1200/JCO.2003.10.130 PubMedGoogle Scholar
  69. 69.
    Xing M (2010) Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid 20(7):697–706. doi:10.1089/thy.2010.1646 PubMedCentralPubMedGoogle Scholar
  70. 70.
    Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE (1999) Prevalence of Ras mutations in thyroid neoplasia. Clin Endocrinol (Oxf) 50(4):529–535Google Scholar
  71. 71.
    Bongarzone I, Fugazzola L, Vigneri P, Mariani L, Mondellini P, Pacini F, Basolo F, Pinchera A, Pilotti S, Pierotti MA (1996) Age-related activation of the tyrosine kinase receptor protooncogenes RET and NTRK1 in papillary thyroid carcinoma. J Clin Endocrinol Metab 81(5):2006–2009PubMedGoogle Scholar
  72. 72.
    Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM (2000) The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab 85(3):1170–1175PubMedGoogle Scholar
  73. 73.
    Bounacer A, Wicker R, Caillou B, Cailleux AF, Sarasin A, Schlumberger M, Suarez HG (1997) High prevalence of activating ret proto-oncogene rearrangements, in thyroid tumors from patients who had received external radiation. Oncogene 15(11):1263–1273. doi:10.1038/sj.onc.1200206 PubMedGoogle Scholar
  74. 74.
    Rabes HM, Demidchik EP, Sidorow JD, Lengfelder E, Beimfohr C, Hoelzel D, Klugbauer S (2000) Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-Chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin Cancer Res 6(3):1093–1103PubMedGoogle Scholar
  75. 75.
    Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, Basolo F, Demidchik EP, Miccoli P, Pinchera A, Pacini F (2001) RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab 86(7):3211–3216PubMedGoogle Scholar
  76. 76.
    Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G, Qumsiyeh MB, Rothstein JL, Fusco A, Santoro M, Zitzelsberger H, Tallini G (2006) RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto's thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 91(6):2414–2423PubMedGoogle Scholar
  77. 77.
    Ishizaka Y, Kobayashi S, Ushijima T, Hirohashi S, Sugimura T, Nagao M (1991) Detection of retTPC/PTC transcripts in thyroid adenomas and adenomatous goiter by an RT-PCR method. Oncogene 6(9):1667–1672PubMedGoogle Scholar
  78. 78.
    Sassolas G, Hafdi-Nejjari Z, Ferraro A, Decaussin-Petrucci M, Rousset B, Borson-Chazot F, Borbone E, Berger N, Fusco A (2012) Oncogenic alterations in papillary thyroid cancers of young patients. Thyroid 22(1):17–26. doi:10.1089/thy.2011.0215 PubMedGoogle Scholar
  79. 79.
    Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, Biddinger PW, Nikiforov YE (2006) Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–222PubMedGoogle Scholar
  80. 80.
    Santoro M, Melillo RM, Fusco A (2006) RET/PTC activation in papillary thyroid carcinoma: European Journal of Endocrinology Prize Lecture. Eur J Endocrinol 155(5):645–653. doi:10.1530/eje.1.02289 PubMedGoogle Scholar
  81. 81.
    Soares P, Fonseca E, Wynford-Thomas D, Sobrinho-Simoes M (1998) Sporadic ret-rearranged papillary carcinoma of the thyroid: a subset of slow growing, less aggressive thyroid neoplasms? J Pathol 185(1):71–78PubMedGoogle Scholar
  82. 82.
    Puxeddu E, Moretti S, Giannico A, Martinelli M, Marino C, Avenia N, Cristofani R, Farabi R, Reboldi G, Ribacchi R, Pontecorvi A, Santeusanio F (2003) Ret/PTC activation does not influence clinical and pathological features of adult papillary thyroid carcinomas. Eur J Endocrinol 148(5):505–513PubMedGoogle Scholar
  83. 83.
    de Vries MM, Celestino R, Castro P, Eloy C, Maximo V, van der Wal JE, Plukker JT, Links TP, Hofstra RM, Sobrinho-Simoes M, Soares P (2012) RET/PTC rearrangement is prevalent in follicular Hurthle cell carcinomas. Histopathology. doi:10.1111/j.1365-2559.2012.04276.x PubMedGoogle Scholar
  84. 84.
    Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, Fletcher JA (2000) PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289 (5483):1357–1360. doi:8756 [pii]Google Scholar
  85. 85.
    Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T, Sobrinho LG, Leite V (2002) Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87(8):3947–3952PubMedGoogle Scholar
  86. 86.
    Nikiforova MN, Biddinger PW, Caudill CM, Kroll TG, Nikiforov YE (2002) PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses. Am J Surg Pathol 26(8):1016–1023PubMedGoogle Scholar
  87. 87.
    Placzkowski KA, Reddi HV, Grebe SK, Eberhardt NL, McIver B (2008) The role of the PAX8/PPARgamma fusion oncogene in thyroid cancer. PPAR Res 2008:672829. doi:10.1155/2008/672829 PubMedCentralPubMedGoogle Scholar
  88. 88.
    Sobrinho-Simoes M, Maximo V, Rocha AS, Trovisco V, Castro P, Preto A, Lima J, Soares P (2008) Intragenic mutations in thyroid cancer. Endocrinol Metab Clin N Am 37(2):333–362. doi:10.1016/j.ecl.2008.02.004 Google Scholar
  89. 89.
    Nikiforova MN, Lynch RA, Biddinger PW, Alexander EK, Dorn GW 2nd, Tallini G, Kroll TG, Nikiforov YE (2003) RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab 88(5):2318–2326PubMedGoogle Scholar
  90. 90.
    Marques AR, Espadinha C, Frias MJ, Roque L, Catarino AL, Sobrinho LG, Leite V (2004) Underexpression of peroxisome proliferator-activated receptor (PPAR)gamma in PAX8/PPARgamma-negative thyroid tumours. Br J Cancer 91(4):732–738. doi:10.1038/sj.bjc.6601989 PubMedCentralPubMedGoogle Scholar
  91. 91.
    Sahin M, Allard BL, Yates M, Powell JG, Wang XL, Hay ID, Zhao Y, Goellner JR, Sebo TJ, Grebe SK, Eberhardt NL, McIver B (2005) PPARgamma staining as a surrogate for PAX8/PPARgamma fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J Clin Endocrinol Metab 90(1):463–468. doi:10.1210/jc.2004-1203 PubMedGoogle Scholar
  92. 92.
    Vinagre J, Almeida A, Populo H, Batista R, Lyra J, Pinto V, Coelho R, Celestino R, Prazeres H, Lima L, Melo M, Rocha AG, Preto A, Castro P, Castro L, Pardal F, Lopes JM, Santos LL, Reis RM, Cameselle-Teijeiro J, Sobrinho-Simoes M, Lima J, Maximo V, Soares P (2013) Frequency of TERT promoter mutations in human cancers. Nat Commun 4:2185. doi:10.1038/ncomms3185 PubMedGoogle Scholar
  93. 93.
    Daniels GH (2013) What is the role of molecular markers in the management of "indeterminate" thyroid nodules? Cancer Cytopathol 121(5):223–224. doi:10.1002/cncy.21289 PubMedGoogle Scholar
  94. 94.
    Nikiforov YE, Steward DL, Robinson-Smith TM, Haugen BR, Klopper JP, Zhu Z, Fagin JA, Falciglia M, Weber K, Nikiforova MN (2009) Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab 94(6):2092–2098. doi:10.1210/jc.2009-0247 PubMedGoogle Scholar
  95. 95.
    Cantara S, Capezzone M, Marchisotta S, Capuano S, Busonero G, Toti P, Di Santo A, Caruso G, Carli AF, Brilli L, Montanaro A, Pacini F (2010) Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J Clin Endocrinol Metab 95(3):1365–1369. doi:10.1210/jc.2009-2103 PubMedGoogle Scholar
  96. 96.
    Xing M, Haugen BR, Schlumberger M (2013) Progress in molecular-based management of differentiated thyroid cancer. Lancet 381(9871):1058–1069. doi:10.1016/S0140-6736(13)60109-9 PubMedGoogle Scholar
  97. 97.
    Alexander EK, Kennedy GC, Baloch ZW, Cibas ES, Chudova D, Diggans J, Friedman L, Kloos RT, LiVolsi VA, Mandel SJ, Raab SS, Rosai J, Steward DL, Walsh PS, Wilde JI, Zeiger MA, Lanman RB, Haugen BR (2012) Preoperative diagnosis of benign thyroid nodules with indeterminate cytology. N Engl J Med 367(8):705–715. doi:10.1056/NEJMoa1203208 PubMedGoogle Scholar
  98. 98.
    Rhee CM, Alexander EK, Bhan I, Brunelli SM (2013) Hypothyroidism and mortality among dialysis patients. Clin J Am Soc Nephrol : CJASN 8(4):593–601. doi:10.2215/CJN.06920712 PubMedGoogle Scholar
  99. 99.
    Griffith OL, Melck A, Jones SJ, Wiseman SM (2006) Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol 24(31):5043–5051. doi:10.1200/JCO.2006.06.7330 PubMedGoogle Scholar
  100. 100.
    Kim HY, Park WY, Lee KE, Park WS, Chung YS, Cho SJ, Youn YK (2010) Comparative analysis of gene expression profiles of papillary thyroid microcarcinoma and papillary thyroid carcinoma. J Cancer Res Ther 6(4):452–457. doi:10.4103/0973-1482.77103 PubMedGoogle Scholar
  101. 101.
    Zhang X, Mao H, Lv Z (2013) MicroRNA role in thyroid cancer pathogenesis. Front Biosci (Landmark Ed) 18:734–739Google Scholar
  102. 102.
    Eszlinger M, Krohn K, Hauptmann S, Dralle H, Giordano TJ, Paschke R (2008) Perspectives for improved and more accurate classification of thyroid epithelial tumors. J Clin Endocrinol Metab 93(9):3286–3294. doi:10.1210/jc.2008-0201 PubMedGoogle Scholar
  103. 103.
    Pallante P, Visone R, Croce CM, Fusco A (2010) Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocrinol Relat Cancer 17(1):F91–F104. doi:10.1677/ERC-09-0217 Google Scholar
  104. 104.
    Pinto AE, Silva G, Banito A, Leite V, Soares J (2008) Aneuploidy and high S-phase as biomarkers of poor clinical outcome in poorly differentiated and anaplastic thyroid carcinoma. Oncol Reports 20(4):913–919Google Scholar
  105. 105.
    Bohm J, Niskanen L, Kiraly K, Kellokoski J, Eskelinen M, Hollmen S, Alhava E, Kosma VM (2000) Expression and prognostic value of alpha-, beta-, and gamma-catenins indifferentiated thyroid carcinoma. J Clin Endocrinol Metab 85(12):4806–4811PubMedGoogle Scholar
  106. 106.
    Wiseman SM, Griffith OL, Deen S, Rajput A, Masoudi H, Gilks B, Goldstein L, Gown A, Jones SJ (2007) Identification of molecular markers altered during transformation of differentiated into anaplastic thyroid carcinoma. Arch Surg 142(8):717–727. doi:10.1001/archsurg.142.8.717, discussion 727–719PubMedGoogle Scholar
  107. 107.
    Elisei R, Viola D, Torregrossa L, Giannini R, Romei C, Ugolini C, Molinaro E, Agate L, Biagini A, Lupi C, Valerio L, Materazzi G, Miccoli P, Piaggi P, Pinchera A, Vitti P, Basolo F (2012) The BRAF(V600E) mutation is an independent, poor prognostic factor for the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab 97(12):4390–4398. doi:10.1210/jc.2012-1775 PubMedGoogle Scholar
  108. 108.
    Fernandez IJ, Piccin O, Sciascia S, Cavicchi O, Repaci A, Vicennati V, Fiorentino M (2013) Clinical significance of BRAF mutation in thyroid papillary cancer. Otolaryngol Head Neck Surg : Off J Am Acad Otolaryngol-Head Neck Surg 148(6):919–925. doi:10.1177/0194599813481942 Google Scholar
  109. 109.
    Kim SJ, Lee KE, Myong JP, Park JH, Jeon YK, Min HS, Park SY, Jung KC, Koo do H, Youn YK (2012) BRAF V600E mutation is associated with tumor aggressiveness in papillary thyroid cancer. World J Surg 36(2):310–317. doi:10.1007/s00268-011-1383-1 PubMedGoogle Scholar
  110. 110.
    Ricarte J, Ganly I, Rivera M, Katabi N, Fu WM, Shaha A, Tuttle RM, Fagin JA, Ghossein R (2012) Papillary thyroid carcinomas with cervical lymph node metastases can be stratified into clinically relevant prognostic categories using oncogenic BRAF, the number of nodal mMetastases, and extra-nodal extension. Thyroid 22(6):575–584. doi:10.1089/thy.2011.0431 Google Scholar
  111. 111.
    Rossi ED, Martini M, Capodimonti S, Lombardi CP, Pontecorvi A, Vellone VG, Zannoni GF, Larocca LM, Fadda G (2013) BRAF (V600E) mutation analysis on liquid-based cytology-processed aspiration biopsies predicts bilaterality and lymph node involvement in papillary thyroid microcarcinoma. Cancer Cytopathol 121(6):291–297. doi:10.1002/cncy.21258 PubMedGoogle Scholar
  112. 112.
    Tufano RP, Bishop J, Wu G (2012) Reoperative central compartment dissection for patients with recurrent/persistent papillary thyroid cancer: efficacy, safety, and the association of the BRAF mutation. Laryngoscope 122(7):1634–1640. doi:10.1002/lary.23371 PubMedGoogle Scholar
  113. 113.
    Garcia-Rostan G, Camp RL, Herrero A, Carcangiu ML, Rimm DL, Tallini G (2001) Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes and poor prognosis. Am J Pathol 158(3):987–996PubMedCentralPubMedGoogle Scholar
  114. 114.
    So AK, Kaur J, Kak I, Assi J, MacMillan C, Ralhan R, Walfish PG (2012) Biotinidase is a novel marker for papillary thyroid cancer aggressiveness. PloS one 7(7):e40956. doi:10.1371/journal.pone.0040956 PubMedCentralPubMedGoogle Scholar
  115. 115.
    Liu Z, Liu D, Bojdani E, El-Naggar AK, Vasko V, Xing M (2010) IQGAP1 plays an important role in the invasiveness of thyroid cancer. Clin Cancer Res 16(24):6009–6018. doi:10.1158/1078-0432.CCR-10-1627 PubMedCentralPubMedGoogle Scholar
  116. 116.
    Ramirez R, Hsu D, Patel A, Fenton C, Dinauer C, Tuttle RM, Francis GL (2000) Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin Endocrinol (Oxf) 53(5):635–644Google Scholar
  117. 117.
    Ji B, Liu Y, Zhang P, Wang Y, Wang G (2012) COX-2 expression and tumor angiogenesis in thyroid carcinoma patients among northeast Chinese population—result of a single-center study. Int J Med Sci 9(3):237–242. doi:10.7150/ijms.4173 PubMedCentralPubMedGoogle Scholar
  118. 118.
    Hara H, Fulton N, Yashiro T, Ito K, DeGroot LJ, Kaplan EL (1994) N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 116(6):1010–1016PubMedGoogle Scholar
  119. 119.
    Sheils OM, O'Leary JJ, Sweeney EC (2000) Assessment of ret/PTC-1 rearrangements in neoplastic thyroid tissue using TaqMan RT-PCR. J Pathol 192(1):32–36. doi:10.1002/1096-9896(2000)9999:9999<::AID-PATH668>3.0.CO;2-F PubMedGoogle Scholar
  120. 120.
    Sugg SL, Ezzat S, Zheng L, Freeman JL, Rosen IB, Asa SL (1999) Oncogene profile of papillary thyroid carcinoma. Surgery 125(1):46–52PubMedGoogle Scholar
  121. 121.
    Wagner PL, Moo TA, Arora N, Liu YF, Zarnegar R, Scognamiglio T, Fahey TJ 3rd (2008) The chemokine receptors CXCR4 and CCR7 are associated with tumor size and pathologic indicators of tumor aggressiveness in papillary thyroid carcinoma. Ann Surg Oncol 15(10):2833–2841. doi:10.1245/s10434-008-0064-2 PubMedGoogle Scholar
  122. 122.
    Khoo ML, Ezzat S, Freeman JL, Asa SL (2002) Cyclin D1 protein expression predicts metastatic behavior in thyroid papillary microcarcinomas but is not associated with gene amplification. J Clin Endocrinol Metab 87(4):1810–1813PubMedGoogle Scholar
  123. 123.
    Pesutic-Pisac V, Punda A, Gluncic I, Bedekovic V, Pranic-Kragic A, Kunac N (2008) Cyclin D1 and p27 expression as prognostic factor in papillary carcinoma of thyroid: association with clinicopathological parameters. Croatian Med J 49(5):643–649Google Scholar
  124. 124.
    Brecelj E, Frkovic Grazio S, Auersperg M, Bracko M (2005) Prognostic value of E-cadherin expression in thyroid follicular carcinoma. Eur J Surg Oncol : J Eur Soc Surg Oncol Br Assoc Surg Oncol 31(5):544–548. doi:10.1016/j.ejso.2005.02.003 Google Scholar
  125. 125.
    von Wasielewski R, Rhein A, Werner M, Scheumann GF, Dralle H, Potter E, Brabant G, Georgii A (1997) Immunohistochemical detection of E-cadherin in differentiated thyroid carcinomas correlates with clinical outcome. Cancer Res 57(12):2501–2507Google Scholar
  126. 126.
    Akslen LA, Varhaug JE (1995) Oncoproteins and tumor progression in papillary thyroid carcinoma: presence of epidermal growth factor receptor, c-erbB-2 protein, estrogen receptor related protein, p21-ras protein, and proliferation indicators in relation to tumor recurrences and patient survival. Cancer 76(9):1643–1654PubMedGoogle Scholar
  127. 127.
    Oler G, Camacho CP, Hojaij FC, Michaluart P Jr, Riggins GJ, Cerutti JM (2008) Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis. Clin Cancer Res 14(15):4735–4742. doi:10.1158/1078-0432.CCR-07-4372 PubMedCentralPubMedGoogle Scholar
  128. 128.
    He HC, Kashat L, Kak I, Kunavisarut T, Gundelach R, Kim D, So AK, MacMillan C, Freeman JL, Ralhan R, Walfish PG (2012) An Ep-ICD based index is a marker of aggressiveness and poor prognosis in thyroid carcinoma. PloS one 7(9):e42893. doi:10.1371/journal.pone.0042893 PubMedCentralPubMedGoogle Scholar
  129. 129.
    Cunha LL, Morari EC, Nonogaki S, Soares FA, Vassallo J, Ward LS (2012) Foxp3 expression is associated with aggressiveness in differentiated thyroid carcinomas. Clinics (Sao Paulo) 67(5):483–488Google Scholar
  130. 130.
    Williams MD, Zhang L, Elliott DD, Perrier ND, Lozano G, Clayman GL, El-Naggar AK (2011) Differential gene expression profiling of aggressive and nonaggressive follicular carcinomas. Hum Pathol 42(9):1213–1220. doi:10.1016/j.humpath.2010.12.006 PubMedCentralPubMedGoogle Scholar
  131. 131.
    Pita JM, Banito A, Cavaco BM, Leite V (2009) Gene expression profiling associated with the progression to poorly differentiated thyroid carcinomas. Br J Cancer 101(10):1782–1791. doi:10.1038/sj.bjc.6605340 PubMedCentralPubMedGoogle Scholar
  132. 132.
    Kremser R, Obrist P, Spizzo G, Erler H, Kendler D, Kemmler G, Mikuz G, Ensinger C (2003) Her2/neu overexpression in differentiated thyroid carcinomas predicts metastatic disease. Virchows Arch 442(4):322–328. doi:10.1007/s00428-003-0769-3 PubMedGoogle Scholar
  133. 133.
    Ruan DT, Warren RS, Moalem J, Chung KW, Griffin AC, Shen W, Duh QY, Nakakura E, Donner DB, Khanafshar E, Weng J, Clark OH, Kebebew E (2008) Mitogen-inducible gene-6 expression correlates with survival and is an independent predictor of recurrence in BRAF(V600E) positive papillary thyroid cancers. Surgery 144(6):908–913. doi:10.1016/j.surg.2008.07.028, discussion 913–904PubMedGoogle Scholar
  134. 134.
    Wreesmann VB, Sieczka EM, Socci ND, Hezel M, Belbin TJ, Childs G, Patel SG, Patel KN, Tallini G, Prystowsky M, Shaha AR, Kraus D, Shah JP, Rao PH, Ghossein R, Singh B (2004) Genome-wide profiling of papillary thyroid cancer identifies MUC1 as an independent prognostic marker. Cancer Res 64(11):3780–3789. doi:10.1158/0008-5472.CAN-03-1460 PubMedGoogle Scholar
  135. 135.
    Asioli S, Erickson LA, Righi A, Jin L, Volante M, Jenkins S, Papotti M, Bussolati G, Lloyd RV (2010) Poorly differentiated carcinoma of the thyroid: validation of the Turin proposal and analysis of IMP3 expression. Mod pathol : Off J US Can Acad Pathol, Inc 23(9):1269–1278. doi:10.1038/modpathol.2010.117 Google Scholar
  136. 136.
    Zou M, Al-Baradie RS, Al-Hindi H, Farid NR, Shi Y (2005) S100A4 (Mts1) gene overexpression is associated with invasion and metastasis of papillary thyroid carcinoma. Br J Cancer 93(11):1277–1284. doi:10.1038/sj.bjc.6602856 PubMedCentralPubMedGoogle Scholar
  137. 137.
    Tian X, Cong M, Zhou W, Zhu J, Liu Q (2008) Relationship between protein expression of VEGF-C, MMP-2 and lymph node metastasis in papillary thyroid cancer. J Int Med Res 36(4):699–703PubMedGoogle Scholar
  138. 138.
    Gerhard R, Nonogaki S, Fregnani JH, Soares FA, Nagai MA (2010) NDRG1 protein overexpression in malignant thyroid neoplasms. Clinics (Sao Paulo) 65(8):757–762Google Scholar
  139. 139.
    Guarino V, Faviana P, Salvatore G, Castellone MD, Cirafici AM, De Falco V, Celetti A, Giannini R, Basolo F, Melillo RM, Santoro M (2005) Osteopontin is overexpressed in human papillary thyroid carcinomas and enhances thyroid carcinoma cell invasiveness. J Clin Endocr Metab 90(9):5270–5278. doi:10.1210/Jc.2005-0271 PubMedGoogle Scholar
  140. 140.
    Melck A, Masoudi H, Griffith OL, Rajput A, Wilkins G, Bugis S, Jones SJ, Wiseman SM (2007) Cell cycle regulators show diagnostic and prognostic utility for differentiated thyroid cancer. Ann Surg Oncol 14(12):3403–3411. doi:10.1245/s10434-007-9572-8 PubMedGoogle Scholar
  141. 141.
    Yip L, Kelly L, Shuai Y, Armstrong MJ, Nikiforov YE, Carty SE, Nikiforova MN (2011) MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann Surg Oncol 18(7):2035–2041. doi:10.1245/s10434-011-1733-0 PubMedGoogle Scholar
  142. 142.
    Chou CK, Chen RF, Chou FF, Chang HW, Chen YJ, Lee YF, Yang KD, Cheng JT, Huang CC, Liu RT (2010) miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid 20(5):489–494. doi:10.1089/thy.2009.0027 PubMedGoogle Scholar
  143. 143.
    Chou CK, Yang KD, Chou FF, Huang CC, Lan YW, Lee YF, Kang HY, Liu RT (2013) Prognostic implications of miR-146b expression and its functional role in papillary thyroid carcinoma. J Clin Endocrinol Metab 98(2):E196–E205. doi:10.1210/jc.2012-2666 PubMedGoogle Scholar
  144. 144.
    Basolo F, Pinchera A, Fugazzola L, Fontanini G, Elisei R, Romei C, Pacini F (1994) Expression of p21 ras protein as a prognostic factor in papillary thyroid cancer. Eur J Cancer 30A(2):171–174PubMedGoogle Scholar
  145. 145.
    Zafon C, Obiols G, Castellvi J, Tallada N, Baena JA, Simo R, Mesa J (2007) Clinical significance of RET/PTC and p53 protein expression in sporadic papillary thyroid carcinoma. Histopathology 50(2):225–231. doi:10.1111/j.1365-2559.2006.02555.x PubMedGoogle Scholar
  146. 146.
    Jo YS, Li S, Song JH, Kwon KH, Lee JC, Rha SY, Lee HJ, Sul JY, Kweon GR, Ro HK, Kim JM, Shong M (2006) Influence of the BRAF V600E mutation on expression of vascular endothelial growth factor in papillary thyroid cancer. J Clin Endocrinol Metab 91(9):3667–3670. doi:10.1210/jc.2005-2836 PubMedGoogle Scholar
  147. 147.
    Klein M, Vignaud JM, Hennequin V, Toussaint B, Bresler L, Plenat F, Leclere J, Duprez A, Weryha G (2001) Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab 86(2):656–658PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Paula Soares
    • 1
    • 2
  • Ricardo Celestino
    • 1
  • Miguel Melo
    • 1
    • 3
    • 4
  • Elsa Fonseca
    • 1
    • 2
    • 5
  • Manuel Sobrinho-Simões
    • 1
    • 2
    • 5
  1. 1.Institute of Molecular Pathology and Immunology of University of Porto (IPATIMUP)PortoPortugal
  2. 2.Department of Pathology and Oncology, Faculty of MedicineUniversity of PortoPortoPortugal
  3. 3.Faculty of MedicineUniversity of CoimbraCoimbraPortugal
  4. 4.Department of Endocrinology, Diabetes and MetabolismUniversity and Hospital Center of CoimbraCoimbraPortugal
  5. 5.Department of PathologyHospital São JoãoPortoPortugal

Personalised recommendations