Advertisement

Virchows Archiv

, Volume 463, Issue 5, pp 613–621 | Cite as

BRAF mutation in sporadic colorectal cancer and Lynch syndrome

  • Alexandra Thiel
  • Mira Heinonen
  • Jonas Kantonen
  • Annette Gylling
  • Laura Lahtinen
  • Mari Korhonen
  • Soili Kytölä
  • Jukka-Pekka Mecklin
  • Arto Orpana
  • Päivi Peltomäki
  • Ari RistimäkiEmail author
Original Article

Abstract

The aim of the study was to detect mutations of BRAF oncogene in colorectal cancer and to use this information to identify Lynch syndrome patients. Consecutive cases of primary colorectal cancer (n = 137) were analyzed for MLH1 protein expression using immunohistochemistry (IHC). BRAF V600E mutation was detected by IHC using a specific monoclonal antibody (VE1) and by qPCR. All MLH1 protein-negative cases were subjected to microsatellite instability analysis and MLH1 promoter methylation assay. MLH1 protein expression deficiency and high microsatellite instability (MSI-H) were detected in 18 of the 137 (13.1 %) consecutive colorectal cancer specimens. Detection of the BRAF V600E mutation by IHC was 100 % sensitive and specific as compared to qPCR, and this mutation was frequently present in the MSI-H group (77.8 %; 14/18) and less frequently in the microsatellite-stable group (7.6 %; 9/118). All BRAF V600E mutated cases of the MSI-H group presented with a MLH1 promoter methylation (14/14) as detected by methylation-specific multiplex ligation-dependent probe amplification. When BRAF was wild type in the MSI-H group, only one MLH1 promoter methylation was detected (1/4), and of the remaining three cases without MLH1 methylation, two were identified to harbor an MLH1 mutation consistent with Lynch syndrome. Finally, 11 previously confirmed Lynch syndrome cases were analyzed for BRAF V600E mutation, and all of them were wild type. In conclusion, detection of BRAF V600E in colorectal cancer specimens by IHC is sensitive and specific and may help to identify Lynch syndrome patients.

Keywords

BRAF Colorectal cancer Lynch syndrome MLH1 Microsatellite instability Methylation 

Notes

Acknowledgments

We thank Carita Liikanen, Erkki Hänninen, and Helena Ahola for excellent technical assistance, and Mia Kero and Satu Remes for technical advice. We thank Dr. Pirjo Nummela for comments on the manuscript. This work was supported in part by grants from the Academy of Finland (grant no. 257795, PP), Sigrid Juselius Foundation (J-PM, PP, AR), Finnish Cancer Organization (J-PM, PP, AR), Biocentrum Helsinki (PP), FP7-ERC-232635 (PP), and Helsinki University Central Hospital Research Funds and HUSLAB R&D Funds (AR).

Conflict of interest

We declare that we have no conflict of interest.

Supplementary material

428_2013_1470_Fig3_ESM.jpg (151 kb)
Supplemental Fig. 1

Immunohistochemical staining of melanoma and colorectal cancer specimens with the commercial BRAF V600E mutation specific monoclonal antibody (dilution 1:2,000) with different detection systems. a Melanoma specimen displaying strong BRAF V600E staining. b Colorectal cancer (CRC) specimen with relatively strong BRAF V600E staining. c Colorectal cancer specimen with moderate BRAF V600E staining intensity. Cancer glands with BRAF V600E mutation are stained whereas normal glands (right side of the picture) remain unstained. For all specimens (a-c) the staining intensity decreases dramatically when no amplification is applied and with the UltraView detection system (with or without amplification). AMP (amplification), CRC (colorectal cancer). Original magnification is 100x (JPEG 151 kb)

428_2013_1470_MOESM1_ESM.tif (11.9 mb)
High Resolution Image (TIFF 12,180 kb)

References

  1. 1.
    Geiersbach KB, Samowitz WS (2011) Microsatellite instability and colorectal cancer. Arch Pathol Lab Med 135:1269–1277PubMedCrossRefGoogle Scholar
  2. 2.
    Vasen HF, Blanco I, Aktan-Collan K, Gopie JP, Alonso A, Aretz S, Bernstein I, Bertario L, Burn J, Capella G, Colas C, Engel C, Frayling IM, Genuardi M, Heinimann K, Hes FJ, Hodgson SV, Karagiannis JA, Lalloo F, Lindblom A, Mecklin JP, Moller P, Myrhoj T, Nagengast FM, Parc Y, Ponz de Leon M, Renkonen-Sinisalo L, Sampson JR, Stormorken A, Sijmons RH, Tejpar S, Thomas HJ, Rahner N, Wijnen JT, Jarvinen HJ, Moslein G, the Mallorca group (2013) Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts. Gut 62:812–823PubMedCrossRefGoogle Scholar
  3. 3.
    Aaltonen LA, Salovaara R, Kristo P, Canzian F, Hemminki A, Peltomaki P, Chadwick RB, Kaariainen H, Eskelinen M, Jarvinen H, Mecklin JP, de la Chapelle A (1998) Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med 338:1481–1487PubMedCrossRefGoogle Scholar
  4. 4.
    Popat S, Hubner R, Houlston RS (2005) Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol 23:609–618PubMedCrossRefGoogle Scholar
  5. 5.
    Guastadisegni C, Colafranceschi M, Ottini L, Dogliotti E (2010) Microsatellite instability as a marker of prognosis and response to therapy: a meta-analysis of colorectal cancer survival data. Eur J Cancer 46:2788–2798PubMedCrossRefGoogle Scholar
  6. 6.
    Merok MA, Ahlquist T, Royrvik EC, Tufteland KF, Hektoen M, Sjo OH, Mala T, Svindland A, Lothe RA, Nesbakken A (2012) Microsatellite instability has a positive prognostic impact on stage II colorectal cancer after complete resection: results from a large, consecutive Norwegian series. Ann Oncol 24:1274–1282PubMedCrossRefGoogle Scholar
  7. 7.
    Wangefjord S, Brandstedt J, Ericson Lindquist K, Nodin B, Jirstrom K, Eberhard J (2013) Associations of beta-catenin alterations and MSI screening status with expression of key cell cycle regulating proteins and survival from colorectal cancer. Diagn Pathol 8:10PubMedCrossRefGoogle Scholar
  8. 8.
    Weissman SM, Burt R, Church J, Erdman S, Hampel H, Holter S, Jasperson K, Kalady MF, Haidle JL, Lynch HT, Palaniappan S, Wise PE, Senter L (2012) Identification of individuals at risk for Lynch syndrome using targeted evaluations and genetic testing: National Society of Genetic Counselors and the Collaborative Group of the Americas on Inherited Colorectal Cancer joint practice guideline. J Genet Couns 21:484–493PubMedCrossRefGoogle Scholar
  9. 9.
    Moreira L, Balaguer F, Lindor N, de la Chapelle A, Hampel H, Aaltonen LA, Hopper JL, Le Marchand L, Gallinger S, Newcomb PA, Haile R, Thibodeau SN, Gunawardena S, Jenkins MA, Buchanan DD, Potter JD, Baron JA, Ahnen DJ, Moreno V, Andreu M, Ponz de Leon M, Rustgi AK, Castells A, EPICOLON Consortium (2012) Identification of Lynch syndrome among patients with colorectal cancer. JAMA 308:1555–1565PubMedCrossRefGoogle Scholar
  10. 10.
    Parsons MT, Buchanan DD, Thompson B, Young JP, Spurdle AB (2012) Correlation of tumour BRAF mutations and MLH1 methylation with germline mismatch repair (MMR) gene mutation status: a literature review assessing utility of tumour features for MMR variant classification. J Med Genet 49:151–157PubMedCrossRefGoogle Scholar
  11. 11.
    Peeters M, Oliner K, Parker A, Siena S, Van Cutsem E, Huang J, Humblet Y, Van Laethem JL, Andre T, Wiezorek JS, Reese D, Patterson SD (2013) Massively parallel tumor multigene sequencing to evaluate response to panitumumab in a randomized phase 3 study of metastatic colorectal cancer. Clin Cancer Res 19:1902–1912PubMedCrossRefGoogle Scholar
  12. 12.
    Capper D, Preusser M, Habel A, Sahm F, Ackermann U, Schindler G, Pusch S, Mechtersheimer G, Zentgraf H, von Deimling A (2011) Assessment of BRAF V600E mutation status by immunohistochemistry with a mutation-specific monoclonal antibody. Acta Neuropathol 122:11–19PubMedCrossRefGoogle Scholar
  13. 13.
    Benlloch S, Paya A, Alenda C, Bessa X, Andreu M, Jover R, Castells A, Llor X, Aranda FI, Massuti B (2006) Detection of BRAF V600E mutation in colorectal cancer: comparison of automatic sequencing and real-time chemistry methodology. J Mol Diagn 8:540–543PubMedCrossRefGoogle Scholar
  14. 14.
    Loukola A, Eklin K, Laiho P, Salovaara R, Kristo P, Jarvinen H, Mecklin JP, Launonen V, Aaltonen LA (2001) Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res 61:4545–4549PubMedGoogle Scholar
  15. 15.
    Bettstetter M, Dechant S, Ruemmele P, Vogel C, Kurz K, Morak M, Keller G, Holinski-Feder E, Hofstaedter F, Dietmaier W (2008) MethyQESD, a robust and fast method for quantitative methylation analyses in HNPCC diagnostics using formalin-fixed and paraffin-embedded tissue samples. Lab Invest 88:1367–1375PubMedCrossRefGoogle Scholar
  16. 16.
    Deng G, Chen A, Hong J, Chae HS, Kim YS (1999) Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res 59:2029–2033PubMedGoogle Scholar
  17. 17.
    Gylling A, Abdel-Rahman WM, Juhola M, Nuorva K, Hautala E, Jarvinen HJ, Mecklin JP, Aarnio M, Peltomaki P (2007) Is gastric cancer part of the tumour spectrum of hereditary non-polyposis colorectal cancer? A molecular genetic study. Gut 56:926–933PubMedCrossRefGoogle Scholar
  18. 18.
    Gylling A, Ridanpaa M, Vierimaa O, Aittomaki K, Avela K, Kaariainen H, Laivuori H, Poyhonen M, Sallinen SL, Wallgren-Pettersson C, Jarvinen HJ, Mecklin JP, Peltomaki P (2009) Large genomic rearrangements and germline epimutations in Lynch syndrome. Int J Cancer 124:2333–2340PubMedCrossRefGoogle Scholar
  19. 19.
    Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN (2009) EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet Med 11:42–65PubMedCrossRefGoogle Scholar
  20. 20.
    Senter L, Clendenning M, Sotamaa K, Hampel H, Green J, Potter JD, Lindblom A, Lagerstedt K, Thibodeau SN, Lindor NM, Young J, Winship I, Dowty JG, White DM, Hopper JL, Baglietto L, Jenkins MA, de la Chapelle A (2008) The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 135:419–428PubMedCrossRefGoogle Scholar
  21. 21.
    El-Osta H, Falchook G, Tsimberidou A, Hong D, Naing A, Kim K, Wen S, Janku F, Kurzrock R (2011) BRAF mutations in advanced cancers: clinical characteristics and outcomes. PLoS One 6:e25806PubMedCrossRefGoogle Scholar
  22. 22.
    Lindor NM, Burgart LJ, Leontovich O, Goldberg RM, Cunningham JM, Sargent DJ, Walsh-Vockley C, Petersen GM, Walsh MD, Leggett BA, Young JP, Barker MA, Jass JR, Hopper J, Gallinger S, Bapat B, Redston M, Thibodeau SN (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20:1043–1048PubMedCrossRefGoogle Scholar
  23. 23.
    Capper D, Voigt A, Bozukova G, Ahadova A, Kickingereder P, von Deimling A, von Knebel Doeberitz M, Kloor M (2013) BRAF V600E-specific immunohistochemistry for the exclusion of Lynch syndrome in MSI-H colorectal cancer. Int J Cancer 133:1624–1630PubMedCrossRefGoogle Scholar
  24. 24.
    Capper D, Berghoff AS, Magerle M, Ilhan A, Wohrer A, Hackl M, Pichler J, Pusch S, Meyer J, Habel A, Petzelbauer P, Birner P, von Deimling A, Preusser M (2012) Immunohistochemical testing of BRAF V600E status in 1,120 tumor tissue samples of patients with brain metastases. Acta Neuropathol 123:223–233PubMedCrossRefGoogle Scholar
  25. 25.
    Adackapara CA, Sholl LM, Barletta JA, Hornick JL (2013) Immunohistochemistry using the BRAF V600E mutation-specific monoclonal antibody VE1 is not a useful surrogate for genotyping in colorectal adenocarcinoma. Histopathology 63:187–193PubMedCrossRefGoogle Scholar
  26. 26.
    Affolter K, Samowitz W, Tripp S, Bronner MP (2013) BRAF V600E mutation detection by immunohistochemistry in colorectal carcinoma. Genes Chromosomes Cancer 52:748–752PubMedCrossRefGoogle Scholar
  27. 27.
    Sinicrope FA, Smyrk TC, Tougeron D, Thibodeau SN, Singh S, Muranyi A, Shanmugam K, Grogan TM, Alberts SR, Shi Q (2013) Mutation-specific antibody detects mutant BRAF protein expression in human colon carcinomas. Cancer 119:2765–2770PubMedCrossRefGoogle Scholar
  28. 28.
    Weissman SM, Bellcross C, Bittner CC, Freivogel ME, Haidle JL, Kaurah P, Leininger A, Palaniappan S, Steenblock K, Vu TM, Daniels MS (2011) Genetic counseling considerations in the evaluation of families for Lynch syndrome—a review. J Genet Couns 20:5–19PubMedCrossRefGoogle Scholar
  29. 29.
    Deng G, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA, Truta B, Sleisenger MH, Kim YS (2004) BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 10:191–195PubMedCrossRefGoogle Scholar
  30. 30.
    Toon CW, Walsh MD, Chou A, Capper D, Clarkson A, Sioson L, Clarke S, Mead S, Walters RJ, Clendenning M, Rosty C, Young JP, Win AK, Hopper JL, Crook A, von Deimling A, Jenkins MA, Buchanan DD, Gill AJ (2013) BRAFV600E immunohistochemistry facilitates universal screening of colorectal cancers for lynch syndrome. Am J Surg Pathol PMID: 23797718 (in press)Google Scholar
  31. 31.
    Tie J, Gibbs P, Lipton L, Christie M, Jorissen RN, Burgess AW, Croxford M, Jones I, Langland R, Kosmider S, McKay D, Bollag G, Nolop K, Sieber OM, Desai J (2011) Optimizing targeted therapeutic development: analysis of a colorectal cancer patient population with the BRAF(V600E) mutation. Int J Cancer 128:2075–2084PubMedCrossRefGoogle Scholar
  32. 32.
    Roth AD, Tejpar S, Delorenzi M, Yan P, Fiocca R, Klingbiel D, Dietrich D, Biesmans B, Bodoky G, Barone C, Aranda E, Nordlinger B, Cisar L, Labianca R, Cunningham D, Van Cutsem E, Bosman F (2010) Prognostic role of KRAS and BRAF in stage II and III resected colon cancer: results of the translational study on the PETACC-3, EORTC 40993, SAKK 60-00 trial. J Clin Oncol 28:466–474PubMedCrossRefGoogle Scholar
  33. 33.
    Coffee EM, Faber AC, Roper J, Sinnamon MJ, Goel G, Keung L, Wang WV, Vecchione L, de Vriendt V, Weinstein BJ, Bronson RT, Tejpar S, Xavier RJ, Engelman JA, Martin ES, Hung KE (2013) Concomitant BRAF and PI3K/mTOR blockade is required for effective treatment of BRAF(V600E) colorectal cancer. Clin Cancer Res 19:2688–2698PubMedCrossRefGoogle Scholar
  34. 34.
    Rad R, Cadinanos J, Rad L, Varela I, Strong A, Kriegl L, Constantino-Casas F, Eser S, Hieber M, Seidler B, Price S, Fraga MF, Calvanese V, Hoffman G, Ponstingl H, Schneider G, Yusa K, Grove C, Schmid RM, Wang W, Vassiliou G, Kirchner T, McDermott U, Liu P, Saur D, Bradley A (2013) A genetic progression model of Braf(V600E)-induced intestinal tumorigenesis reveals targets for therapeutic intervention. Cancer Cell 24:15–29PubMedCrossRefGoogle Scholar
  35. 35.
    Funkhouser WK Jr, Lubin IM, Monzon FA, Zehnbauer BA, Evans JP, Ogino S, Nowak JA (2012) Relevance, pathogenesis, and testing algorithm for mismatch repair-defective colorectal carcinomas: a report of the association for molecular pathology. J Mol Diagn 14:91–103PubMedCrossRefGoogle Scholar
  36. 36.
    Perez-Carbonell L, Ruiz-Ponte C, Guarinos C, Alenda C, Paya A, Brea A, Egoavil CM, Castillejo A, Barbera VM, Bessa X, Xicola RM, Rodriguez-Soler M, Sanchez-Fortun C, Acame N, Castellvi-Bel S, Pinol V, Balaguer F, Bujanda L, De-Castro ML, Llor X, Andreu M, Carracedo A, Soto JL, Castells A, Jover R (2012) Comparison between universal molecular screening for Lynch syndrome and revised Bethesda guidelines in a large population-based cohort of patients with colorectal cancer. Gut 61:865–872PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexandra Thiel
    • 1
    • 2
  • Mira Heinonen
    • 1
    • 2
  • Jonas Kantonen
    • 1
    • 2
  • Annette Gylling
    • 3
  • Laura Lahtinen
    • 4
  • Mari Korhonen
    • 5
  • Soili Kytölä
    • 5
  • Jukka-Pekka Mecklin
    • 6
  • Arto Orpana
    • 5
  • Päivi Peltomäki
    • 3
  • Ari Ristimäki
    • 1
    • 2
    Email author
  1. 1.Division of Pathology and Genetics, HUSLAB, and Haartman InstituteHelsinki University Central Hospital and University of HelsinkiHelsinkiFinland
  2. 2.Genome-Scale Biology, Research Programs UnitUniversity of HelsinkiHelsinkiFinland
  3. 3.Department of Medical GeneticsUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of PathologyCentral Hospital Central FinlandJyväskyläFinland
  5. 5.Laboratory of GeneticsHelsinki University Central Hospital, HUSLABHelsinkiFinland
  6. 6.Department of Surgery, Jyväskylä Central Hospital and Institute of Clinical MedicineUniversity of Eastern FinlandJyväskyläFinland

Personalised recommendations