Virchows Archiv

, Volume 463, Issue 4, pp 535–545 | Cite as

Thrombospondin-4 expression is activated during the stromal response to invasive breast cancer

  • Amy E. McCart Reed
  • Sarah Song
  • Jamie R. Kutasovic
  • Lynne E. Reid
  • Jordan M. Valle
  • Ana Cristina Vargas
  • Chanel E. Smart
  • Peter T. Simpson
Original Article


The thromobospondins are a family of extracellular glycoproteins that are activated during tissue remodeling processes such as embryogenesis, wound healing and cancer. Thrombospondin-4 (THBS4) is known to have roles in cellular migration, adhesion and attachment, as well as proliferation in different contexts. Data to support a role in cancer biology is increasing, including for gastrointestinal and prostate tumours. Here, using a combination of immunohistochemistry, immunofluorescence and analysis of publicly available genomic and expression data, we present the first study describing the pattern of expression of THBS4 in normal breast and breast cancer. THBS4 was located to the basement membrane of large ducts and vessels in normal breast tissue, but was absent from epithelium and extracellular matrix. There was a significant induction in expression in cancer-associated stroma relative to normal stroma (P = 0.0033), neoplastic epithelium (P < 0.0001) and normal epithelium (P < 0.0001). There was no difference in stromal expression of THBS4 between invasive ductal carcinomas (IDC) and invasive lobular carcinomas (ILC). The THBS4 mRNA levels were variable yet were generally highest in tumours typically rich in stromal content (ILC, ER positive low grade IDC; luminal A and normal-like subtypes). Genomic alterations of the THBS4 gene (somatic mutations and gene copy number) are rare suggesting this dramatic activation in expression is most likely dynamically regulated through the interaction between invading tumour cells and stromal fibroblasts in the local microenvironment. In summary, THBS4 expression in breast cancer-associated extracellular matrix contributes to the activated stromal response exhibited during tumour progression and this may facilitate invasion of tumour cells.


Thrombospondin-4 Breast cancer Extracellular matrix Cancer-associated stroma 



We thank the patients and their families for the tissues donated for research through the Brisbane Breast Bank and other tissue resources. PTS and ACV were recipients of fellowships from the National Breast Cancer Foundation, Australia and the Ludwig Institute of Cancer Research, respectively. This work was funded by a grant from the Cancer Council Queensland, Australia.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

428_2013_1468_MOESM1_ESM.xls (1.2 mb)
Supplementary Table 1 Details of previous gene expression studies comparing ILC versus IDC (XLS 1239 kb)


  1. 1.
    Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65(5):700–712PubMedCrossRefGoogle Scholar
  2. 2.
    Schroen B, Heymans S, Sharma U, Blankesteijn WM, Pokharel S, Cleutjens JP, Porter JG, Evelo CT, Duisters R, van Leeuwen RE, Janssen BJ, Debets JJ, Smits JF, Daemen MJ, Crijns HJ, Bornstein P, Pinto YM (2004) Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy. Circ Res 95(5):515–522PubMedCrossRefGoogle Scholar
  3. 3.
    Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, Lynch KA, Okada T, Aronow BJ, Osinska H, Prywes R, Lorenz JN, Mori K, Lawler J, Robbins J, Molkentin JD (2012) A thrombospondin-dependent pathway for a protective ER stress response. Cell 149(6):1257–1268PubMedCrossRefGoogle Scholar
  4. 4.
    Stenina OI, Topol EJ, Plow EF (2007) Thrombospondins, their polymorphisms, and cardiovascular disease. Arterioscler Thromb Vasc Biol 27(9):1886–1894PubMedCrossRefGoogle Scholar
  5. 5.
    Frolova EG, Sopko N, Blech L, Popovic ZB, Li J, Vasanji A, Drumm C, Krukovets I, Jain MK, Penn MS, Plow EF, Stenina OI (2012) Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J 26(6):2363–2373PubMedCrossRefGoogle Scholar
  6. 6.
    Narouz-Ott L, Maurer P, Nitsche DP, Smyth N, Paulsson M (2000) Thrombospondin-4 binds specifically to both collagenous and non-collagenous extracellular matrix proteins via its C-terminal domains. J Biol Chem 275(47):37110–37117PubMedCrossRefGoogle Scholar
  7. 7.
    Clezardin P, Frappart L, Clerget M, Pechoux C, Delmas PD (1993) Expression of thrombospondin (TSP1) and its receptors (CD36 and CD51) in normal, hyperplastic, and neoplastic human breast. Cancer Res 53(6):1421–1430PubMedGoogle Scholar
  8. 8.
    Bertin N, Clezardin P, Kubiak R, Frappart L (1997) Thrombospondin-1 and -2 messenger RNA expression in normal, benign, and neoplastic human breast tissues: correlation with prognostic factors, tumor angiogenesis, and fibroblastic desmoplasia. Cancer Res 57(3):396–399PubMedGoogle Scholar
  9. 9.
    Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK, Tognazzi K, Dvorak HF (1999) Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 5(5):1041–1056PubMedGoogle Scholar
  10. 10.
    Yee KO, Connolly CM, Duquette M, Kazerounian S, Washington R, Lawler J (2009) The effect of thrombospondin-1 on breast cancer metastasis. Breast Cancer Res Treat 114(1):85–96PubMedCrossRefGoogle Scholar
  11. 11.
    Wang TN, Qian X, Granick MS, Solomon MP, Rothman VL, Berger DH, Tuszynski GP (1996) Thrombospondin-1 (TSP-1) promotes the invasive properties of human breast cancer. J Surg Res 63(1):39–43PubMedCrossRefGoogle Scholar
  12. 12.
    Wang-Rodriguez J, Urquidi V, Rivard A, Goodison S (2003) Elevated osteopontin and thrombospondin expression identifies malignant human breast carcinoma but is not indicative of metastatic status. Breast Cancer Res 5(5):R136–R143PubMedCrossRefGoogle Scholar
  13. 13.
    Adams JC (2004) Functions of the conserved thrombospondin carboxy-terminal cassette in cell-extracellular matrix interactions and signaling. Int J Biochem Cell Biol 36(6):1102–1114PubMedCrossRefGoogle Scholar
  14. 14.
    Arber S, Caroni P (1995) Thrombospondin-4, an extracellular matrix protein expressed in the developing and adult nervous system promotes neurite outgrowth. J Cell Biol 131(4):1083–1094PubMedCrossRefGoogle Scholar
  15. 15.
    Stenina OI, Desai SY, Krukovets I, Kight K, Janigro D, Topol EJ, Plow EF (2003) Thrombospondin-4 and its variants: expression and differential effects on endothelial cells. Circulation 108(12):1514–1519PubMedCrossRefGoogle Scholar
  16. 16.
    Greco SA, Chia J, Inglis KJ, Cozzi SJ, Ramsnes I, Buttenshaw RL, Spring KJ, Boyle GM, Worthley DL, Leggett BA, Whitehall VL (2010) Thrombospondin-4 is a putative tumour-suppressor gene in colorectal cancer that exhibits age-related methylation. BMC Cancer 10:494PubMedCrossRefGoogle Scholar
  17. 17.
    Forster S, Gretschel S, Jons T, Yashiro M, Kemmner W (2011) THBS4, a novel stromal molecule of diffuse-type gastric adenocarcinomas, identified by transcriptome-wide expression profiling. Mod Pathol 24(10):1390–1403PubMedCrossRefGoogle Scholar
  18. 18.
    Dakhova O, Ozen M, Creighton CJ, Li R, Ayala G, Rowley D, Ittmann M (2009) Global gene expression analysis of reactive stroma in prostate cancer. Clin Cancer Res 15(12):3979–3989PubMedCrossRefGoogle Scholar
  19. 19.
    Rakha EA, El-Sayed ME, Powe DG, Green AR, Habashy H, Grainge MJ, Robertson JF, Blamey R, Gee J, Nicholson RI, Lee AH, Ellis IO (2008) Invasive lobular carcinoma of the breast: response to hormonal therapy and outcomes. Eur J Cancer 44(1):73–83PubMedCrossRefGoogle Scholar
  20. 20.
    Arpino G, Bardou VJ, Clark GM, Elledge RM (2004) Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res 6(3):R149–R156PubMedCrossRefGoogle Scholar
  21. 21.
    Ferlicot S, Vincent-Salomon A, Medioni J, Genin P, Rosty C, Sigal-Zafrani B, Freneaux P, Jouve M, Thiery JP, Sastre-Garau X (2004) Wide metastatic spreading in infiltrating lobular carcinoma of the breast. Eur J Cancer 40(3):336–341PubMedCrossRefGoogle Scholar
  22. 22.
    Pestalozzi BC, Zahrieh D, Mallon E, Gusterson BA, Price KN, Gelber RD, Holmberg SB, Lindtner J, Snyder R, Thurlimann B, Murray E, Viale G, Castiglione-Gertsch M, Coates AS, Goldhirsch A (2008) Distinct clinical and prognostic features of infiltrating lobular carcinoma of the breast: combined results of 15 International Breast Cancer Study Group clinical trials. J Clin Oncol 26(18):3006–3014PubMedCrossRefGoogle Scholar
  23. 23.
    Bertucci F, Orsetti B, Negre V, Finetti P, Rouge C, Ahomadegbe JC, Bibeau F, Mathieu MC, Treilleux I, Jacquemier J, Ursule L, Martinec A, Wang Q, Benard J, Puisieux A, Birnbaum D, Theillet C (2008) Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene 27(40):5359–5372PubMedCrossRefGoogle Scholar
  24. 24.
    Gruel N, Lucchesi C, Raynal V, Rodrigues MJ, Pierron G, Goudefroye R, Cottu P, Reyal F, Sastre-Garau X, Fourquet A, Delattre O, Vincent-Salomon A (2010) Lobular invasive carcinoma of the breast is a molecular entity distinct from luminal invasive ductal carcinoma. Eur J Cancer 46(13):2399–2407PubMedCrossRefGoogle Scholar
  25. 25.
    Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Chen YY, Chew KL, Dairkee SH, Jensen RM, Waldman FM (2003) Differentiation of lobular versus ductal breast carcinomas by expression microarray analysis. Cancer Res 63(21):7167–7175PubMedGoogle Scholar
  26. 26.
    Turashvili G, Bouchal J, Baumforth K, Wei W, Dziechciarkova M, Ehrmann J, Klein J, Fridman E, Skarda J, Srovnal J, Hajduch M, Murray P, Kolar Z (2007) Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7:55PubMedCrossRefGoogle Scholar
  27. 27.
    Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, Kreike B, Reis-Filho JS (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220(1):45–57PubMedCrossRefGoogle Scholar
  28. 28.
    Zhao H, Langerod A, Ji Y, Nowels KW, Nesland JM, Tibshirani R, Bukholm IK, Karesen R, Botstein D, Borresen-Dale AL, Jeffrey SS (2004) Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol Biol Cell 15(6):2523–2536PubMedCrossRefGoogle Scholar
  29. 29.
    Bacani JT, Soares M, Zwingerman R, di Nicola N, Senz J, Riddell R, Huntsman DG, Gallinger S (2006) CDH1/E-cadherin germline mutations in early-onset gastric cancer. J Med Genet 43(11):867–872PubMedCrossRefGoogle Scholar
  30. 30.
    Berx G, Staes K, van Hengel J, Molemans F, Bussemakers MJ, van Bokhoven A, van Roy F (1995) Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 26(2):281–289PubMedCrossRefGoogle Scholar
  31. 31.
    Carneiro F, Oliveira C, Suriano G, Seruca R (2008) Molecular pathology of familial gastric cancer, with an emphasis on hereditary diffuse gastric cancer. J Clin Pathol 61(1):25–30PubMedCrossRefGoogle Scholar
  32. 32.
    Schrader KA, Masciari S, Boyd N, Wiyrick S, Kaurah P, Senz J, Burke W, Lynch HT, Garber JE, Huntsman DG (2008) Hereditary diffuse gastric cancer: association with lobular breast cancer. Fam Cancer 7(1):73–82PubMedCrossRefGoogle Scholar
  33. 33.
    Koboldt DC, Fulton RS, McLellan MD, Schmidt H, Kalicki-Veizer J et al (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  34. 34.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, Schreiber GJ, Peterse JL, Roberts C, Marton MJ, Parrish M, Atsma D, Witteveen A, Glas A, Delahaye L, van der Velde T, Bartelink H, Rodenhuis S, Rutgers ET, Friend SH, Bernards R (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009PubMedCrossRefGoogle Scholar
  35. 35.
    Hu Z, Fan C, Oh DS, Marron JS, He X, Qaqish BF, Livasy C, Carey LA, Reynolds E, Dressler L, Nobel A, Parker J, Ewend MG, Sawyer LR, Wu J, Liu Y, Nanda R, Tretiakova M, Ruiz Orrico A, Dreher D, Palazzo JP, Perreard L, Nelson E, Mone M, Hansen H, Mullins M, Quackenbush JF, Ellis MJ, Olopade OI, Bernard PS, Perou CM (2006) The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7:96PubMedCrossRefGoogle Scholar
  36. 36.
    Smyth G (2005) Limma: linear models for microarray data. In: R. Gentleman, V. Carey, S. Dudoit, R. Irizarry, W. Huber (eds.) Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York pp 397–420.Google Scholar
  37. 37.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57(1):289–300Google Scholar
  38. 38.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752PubMedCrossRefGoogle Scholar
  39. 39.
    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, Porter D, Hu M, Chin L, Richardson A, Schnitt S, Sellers WR, Polyak K (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32PubMedCrossRefGoogle Scholar
  40. 40.
    Wong SY, Purdie AT, Han P (1992) Thrombospondin and other possible related matrix proteins in malignant and benign breast disease. An immunohistochemical study. Am J Pathol 140(6):1473–1482PubMedGoogle Scholar
  41. 41.
    Rakha EA, Ellis IO (2010) Lobular breast carcinoma and its variants. Semin Diagn Pathol 27(1):49–61PubMedCrossRefGoogle Scholar
  42. 42.
    Mackay A, Weigelt B, Grigoriadis A, Kreike B, Natrajan R, A’Hern R, Tan DS, Dowsett M, Ashworth A, Reis-Filho JS (2011) Microarray-based class discovery for molecular classification of breast cancer: analysis of interobserver agreement. J Natl Cancer Inst 103(8):662–673PubMedCrossRefGoogle Scholar
  43. 43.
    Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, Quackenbush JF, Stijleman IJ, Palazzo J, Marron JS, Nobel AB, Mardis E, Nielsen TO, Ellis MJ, Perou CM, Bernard PS (2009) Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 27(8):1160–1167PubMedCrossRefGoogle Scholar
  44. 44.
    Cleator SJ, Powles TJ, Dexter T, Fulford L, Mackay A, Smith IE, Valgeirsson H, Ashworth A, Dowsett M (2006) The effect of the stromal component of breast tumours on prediction of clinical outcome using gene expression microarray analysis. Breast Cancer Res 8(3):R32PubMedCrossRefGoogle Scholar
  45. 45.
    Elloumi F, Hu Z, Li Y, Parker JS, Gulley ML, Amos KD, Troester MA (2011) Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples. BMC Med Genomics 4:54PubMedCrossRefGoogle Scholar
  46. 46.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659PubMedCrossRefGoogle Scholar
  47. 47.
    Roman-Perez E, Casbas-Hernandez P, Pirone JR, Rein J, Carey LA, Lubet RA, Mani SA, Amos KD, Troester MA (2012) Gene expression in extratumoral microenvironment predicts clinical outcome in breast cancer patients. Breast Cancer Res 14(2):R51PubMedCrossRefGoogle Scholar
  48. 48.
    Chang HY, Nuyten DS, Sneddon JB, Hastie T, Tibshirani R, Sorlie T, Dai H, He YD, van’t Veer LJ, Bartelink H, van de Rijn M, Brown PO, van de Vijver MJ (2005) Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival. Proc Natl Acad Sci USA 102(10):3738–3743PubMedCrossRefGoogle Scholar
  49. 49.
    Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montgomery K, Chi JT, van de Rijn M, Botstein D, Brown PO (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2(2):E7PubMedCrossRefGoogle Scholar
  50. 50.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, Hallett M, Park M (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14(5):518–527PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Amy E. McCart Reed
    • 1
  • Sarah Song
    • 1
    • 2
  • Jamie R. Kutasovic
    • 1
  • Lynne E. Reid
    • 1
  • Jordan M. Valle
    • 1
  • Ana Cristina Vargas
    • 1
    • 3
  • Chanel E. Smart
    • 1
  • Peter T. Simpson
    • 1
  1. 1.The University of Queensland, UQ Centre for Clinical Research (UQCCR), Building 71/918The Royal Brisbane & Women’s HospitalHerstonAustralia
  2. 2.Queensland Centre for Medical Genomics, Institute for Molecular BioscienceThe University of QueenslandBrisbaneAustralia
  3. 3.Pathology Queensland: The Royal Brisbane and Women’s HospitalBrisbaneAustralia

Personalised recommendations