Advertisement

Virchows Archiv

, Volume 462, Issue 5, pp 541–546 | Cite as

High microvessel density in pancreatic ductal adenocarcinoma is associated with high grade

  • Anca BarăuEmail author
  • Amparo Ruiz-Sauri
  • Gerardo Valencia
  • Maria del Carmen Gómez-Mateo
  • Luis Sabater
  • Antonio Ferrandez
  • Antonio Llombart-Bosch
Original Article

Abstract

The objectives of this work are to study angiogenesis in pancreatic ductal adenocarcinoma using computerized morphometric and image analysis and to compare the microvascular density in intratumoral and peritumoral areas and normal pancreatic tissue. Microvascular density was analyzed in 60 cases of pancreatic ductal adenocarcinoma and 30 samples of normal pancreatic tissue using an avidin–biotin immunoperoxidase technique with an anti-CD31 antibody. Microvascular density (MVD) was analyzed through digital microimaging and computerized analysis. The blood vessel density in the tumor was significantly higher than in peritumoral areas and in normal pancreatic tissue. Well differentiated pancreatic ductal adenocarcinomas contained higher MVD than poorly differentiated carcinomas. In pancreatic adenocarcinoma, MVD is higher than in peritumoral tissue or normal pancreatic tissue.

Keywords

Pancreatic ductal adenocarcinoma Angiogenesis Microvessel density CD 31 antibody 

Notes

Acknowledgments

This study was carried out with support from the Junta Asociada Provincial of the AECC, Valencia, Spain, and “Gent per Gent” Foundation.

Conflict of interest

We declare that we have no conflict of interest.

References

  1. 1.
    Jemal A, Siegel R, Ward E et al (2008) Cancer statistics. Cancer J Clin 58:71–96CrossRefGoogle Scholar
  2. 2.
    Chu GC, Kimmelman AC, Hezel A, DePinho RA (2007) Stromal biology of pancreatic cancer. J Cell Biochem 101:887–907PubMedCrossRefGoogle Scholar
  3. 3.
    Mahadevan D, Von Hoff DD (2007) Tumor stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther 6:1186–1197PubMedCrossRefGoogle Scholar
  4. 4.
    Whatcott CJ, Han H, Posner RG et al (2011) Targeting the tumor microenvironment in cancer: why hyaluronidase deserves a second look. Cancer Discov 1:291–296PubMedCrossRefGoogle Scholar
  5. 5.
    Vasseur S, Tomasini R, Tournaire R et al (2010) Hypoxia induced tumor metabolic switch contributes to pancreatic cancer aggressiveness. Cancers 2:2138–2152CrossRefGoogle Scholar
  6. 6.
    Masamune A, Shimosegawa T (2009) Signal transduction in pancreatic stellate cells. J Gastroenterol 44:249–260PubMedCrossRefGoogle Scholar
  7. 7.
    Erkan M, Reiser-Erkan C, Michalski CW et al (2009) Cancer stellate-cells interactions perpetuate the hypoxia fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia 11:497–508PubMedGoogle Scholar
  8. 8.
    Koong AC, Mehta VK, Le QT et al (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48:919–922PubMedCrossRefGoogle Scholar
  9. 9.
    Apte MV, Park S, Phillips PA et al (2004) Desmoplastic reaction in pancreatic cancer: role of pancreatic stellate cells. Pancreas 29:179–187PubMedCrossRefGoogle Scholar
  10. 10.
    Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943PubMedGoogle Scholar
  11. 11.
    Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515PubMedGoogle Scholar
  12. 12.
    Svagzdys S, Lesauskaite V, Pavalkis D et al (2009) Microvessel density as a new prognostic marker after radiotherapy in rectal cancer. BMC Cancer 9:95PubMedCrossRefGoogle Scholar
  13. 13.
    Ravazoula P, Hatjikondi O, Maragoudakis M et al (1996) Angiogenesis and metastatic potential in breast carcinoma. Breast 5:418–421CrossRefGoogle Scholar
  14. 14.
    Weidner N (1995) Current pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat 36:169–180PubMedCrossRefGoogle Scholar
  15. 15.
    Uzzan B, Nicolas P, Cucherat M et al (2004) Microvessel density as a prognostic factor in women with breast cancer: a systematic review of the literature and meta-analysis. Cancer Res 64:2941–2955PubMedCrossRefGoogle Scholar
  16. 16.
    Zhao H-C, Qin R, Chen X-X et al (2006) Microvessel density is a prognostic marker of human gastric cancer. World J Gastroenterol 12:7598–7603PubMedGoogle Scholar
  17. 17.
    Han H, Silverman JF, Santucci TS et al (2001) Vascular endothelial growth factor expression in stage I non-small cell lung cancer correlates with neoangiogenesis and a poor prognosis. Ann Surg Oncol 8:72–79PubMedCrossRefGoogle Scholar
  18. 18.
    Takagi K, Takada T, Amano H (2005) A high peripheral microvessel density count correlates with a poor prognosis in pancreatic cancer. J Gastroenterol 40:402–408PubMedCrossRefGoogle Scholar
  19. 19.
    Ikeda N, Adachi M, Taki T et al (1999) Prognostic significance of angiogenesis in human pancreatic cancer. Br J Cancer 79:1553–1563PubMedCrossRefGoogle Scholar
  20. 20.
    Ueda T, Oda T, Kinoshita T et al (2002) Neovascularization in pancreatic ductal adenocarcinoma: microvessel count analysis, comparison with non-cancerous regions and other types of carcinomas. Oncol Rep 9:239–245PubMedGoogle Scholar
  21. 21.
    Karademir S, Sokmen S, Terzi C et al (2000) Tumor angiogenesis as a prognostic predictor in pancreatic cancer. J Hepatobiliary Pancreat Surg 7:489–495PubMedCrossRefGoogle Scholar
  22. 22.
    Van der Zee JA, Van Eijck CH, Hop WC et al (2011) Angiogenesis: a prognostic determinant in pancreatic cancer? Eur J Cancer 47:2576–2584PubMedCrossRefGoogle Scholar
  23. 23.
    Hsu SM, Raine L, Fanger H (1981) Use of avidin-biotin peroxidase complex (ABC) in immunoperoxidase techniques. J Histochem Cytochem 29:577–580PubMedCrossRefGoogle Scholar
  24. 24.
    Kloppel G, Luttges J (2001) WHO classification 2000: exocrine pancreas tumor. VerhandlugenderDeutschenGesellschaft fur Pathologie 85:219–228Google Scholar
  25. 25.
    Sobin LH, Wittekind C (eds) (2002) TNM classification of malignant tumours, 6th ed. Wiley-Liss, BaltimoreGoogle Scholar
  26. 26.
    Edge SB, Byrd DR, Compton CC et al (2010) Exocrine and endocrine pancreas. AJCC cancer staging manual, 7th edn. Springer, New York, pp 241–249Google Scholar
  27. 27.
    Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31PubMedCrossRefGoogle Scholar
  28. 28.
    Weidner N (2003) Angiogenesis as a predictor of clinical outcome in cancer patients. Hum Pathol 31:403–405CrossRefGoogle Scholar
  29. 29.
    Weidner N (2001) Tumor vascularity: what does it tell us about the growth and spread of cancer? In: D’Amore PA, Voest E (eds) Tumor angiogenesis and microcirculation. Marcel Dekker, New York, pp 465–486Google Scholar
  30. 30.
    Pluda JM, Parkinson DR (1996) Clinical implications of tumor-associated neovascularisation and current antiangiogenic strategies of the treatment of malignancies of pancreas. Cancer 78:680–687PubMedGoogle Scholar
  31. 31.
    Linder S, Blasjo M, von Rosen A et al (2001) Pattern of distribution and prognostic value of angiogenesis in pancreatic duct carcinoma: a semiquantitative immunohistochemical study of 45 patients. Pancreas 22:240–247PubMedCrossRefGoogle Scholar
  32. 32.
    Khan AW, Dhillon AP, Hutchins R et al (2002) Prognostic significance of intratumoral microvessel density (IMD) in resected pancreatic and ampullary cancers to standard histopathological variables and survival. Eur J Surg Oncol 28:637–644PubMedCrossRefGoogle Scholar
  33. 33.
    Takagi K, Takada T, Amano H et al (2005) Analysis of microvessels in pancreatic cancer: by light microscopy, confocal laser scan microscopy, and electron microscopy. J Gastroenterol 40(4):402–408PubMedCrossRefGoogle Scholar
  34. 34.
    Rzepko R, JaskiewiczK KM et al (2003) Microvascular density in chronic pancreatitis and pancreatic ductal adenocarcinoma. Folia Histochem Cytobyol 41:237–239Google Scholar
  35. 35.
    Vermeulen PB, Gasparini G, Fox SB et al (1996) Quantification of angiogenesis in solid human tumors: in international consensus on the methodology and criteria of evaluation. Eur J Cancer 32:2474–2484CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anca Barău
    • 1
    Email author
  • Amparo Ruiz-Sauri
    • 2
  • Gerardo Valencia
    • 2
  • Maria del Carmen Gómez-Mateo
    • 2
  • Luis Sabater
    • 3
  • Antonio Ferrandez
    • 2
    • 3
  • Antonio Llombart-Bosch
    • 2
  1. 1.Department of Internal Medicine, Emergency County Hospital CraiovaUniversity of Medicine and Pharmacy CraiovaCraiovaRomania
  2. 2.Department of PathologyUniversity of ValenciaValenciaSpain
  3. 3.Department of SurgeryHospital Clinico Universitario de ValenciaValenciaSpain

Personalised recommendations