Virchows Archiv

, Volume 462, Issue 2, pp 163–173 | Cite as

AZGP1 and SPDEF mRNA expression differentiates breast carcinoma from ovarian serous carcinoma

  • Helene Tuft Stavnes
  • Dag André Nymoen
  • Anita Langerød
  • Arild Holth
  • Anne-Lise Børresen Dale
  • Ben DavidsonEmail author
Original Article


The ANPEP, AZGP1, and SPDEF genes were previously found to be overexpressed in breast compared to ovarian carcinoma effusions. The present study validated this finding in a larger cohort consisting of both primary and metastatic tumors. ANPEP, AZGP1, and SPDEF mRNA expression was investigated in 83 breast carcinomas (57 primary carcinomas and 26 effusions) and 40 ovarian carcinomas (20 primary carcinomas and 20 effusions) using qPCR. ANPEP protein expression was immunohistochemically analyzed in 53 breast carcinoma effusions and patient-matched primary carcinomas (n = 25) and lymph node metastases (n = 16). mRNA and protein levels were studied for association with tumor type and anatomic site, and for clinical role in breast carcinoma. AZGP1 and SPDEF mRNA was overexpressed in breast compared to ovarian carcinoma (both p < 0.001). AZGP1 mRNA was overexpressed in primary breast carcinoma compared to effusions (p < 0.001), with opposite findings for ANPEP (p = 0.044). AZGP1 mRNA expression correlated with positive ER status (p = 0.032) and grade 1 histology (p = 0.011), whereas SPDEF mRNA levels were associated with positive ER (p = 0.002) and PR (p = 0.013) status and tamoxifen treatment (p = 0.004). ANPEP protein expression was higher in breast carcinoma effusions compared to primary tumors and lymph node metastases (both p = 0.001). ANPEP, AZGP1, and SPDEF levels were unrelated to disease-free or overall survival. This is the first study documenting ANPEP, AZGP1, and SPDEF expression in breast carcinoma effusions. AZGP1 and SPDEF may be novel molecular markers for the differentiation of breast from ovarian carcinoma. ANPEP may be involved in breast carcinoma progression in view of its overexpression in effusions compared to solid specimens.


ANPEP SPDEF AZGP1 Breast carcinoma Ovarian carcinoma Tumor progression Effusions Molecular differentiation 



This work was supported by the Norwegian Cancer Society and the Research Foundation at the Norwegian Radium Hospital.

Conflict of interest statement

We declare that we have no conflicts of interest.


  1. 1.
    Siegel R, Naishadham D, Jemal A (2012) Cancer statistics, 2012. CA Cancer J Clin 62:10–29PubMedCrossRefGoogle Scholar
  2. 2.
    Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55:74–108PubMedCrossRefGoogle Scholar
  3. 3.
    Davidson B, Firat P, Michael CW (eds) (2011) Serous Effusions. Springer, LondonGoogle Scholar
  4. 4.
    Information, NCBI. ANPEP alanyl (membrane) aminopeptidase [Homo sapiens] 2012; Available from:
  5. 5.
    Wickström M, Larsson R, Nygren P, Gullbo J (2011) Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci 102:501–508PubMedCrossRefGoogle Scholar
  6. 6.
    Curnis F, Arrigoni G, Sacchi A, Fischetti L, Arap W, Pasqualini R, Corti A (2002) Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res 62:867–874PubMedGoogle Scholar
  7. 7.
    Guzman-Rojas L, Rangel R, Salameh A, Edwards JK, Dondossola E, Kim YG, Saghatelian A, Giordano RJ, Kolonin MG, Staquicini FI, Koivunen E, Sidman RL, Arap W, Pasqualini R (2012) Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc Natl Acad Sci U S A 109:1637–1642PubMedCrossRefGoogle Scholar
  8. 8.
    Information, NCBI. AZGP1 alpha-2-glycoprotein 1, zinc-binding [Homo sapiens] 2012; Available from:
  9. 9.
    Kong B, Michalski CW, Hong X, Valkovskaya N, Rieder S, Abiatari I, Streit S, Erkan M, Esposito I, Friess H, Kleeff J (2010) AZGP1 is a tumor suppressor in pancreatic cancer inducing mesenchymal-to-epithelial transdifferentiation by inhibiting TGF-β-mediated ERK signaling. Oncogene 29:5146–5158PubMedCrossRefGoogle Scholar
  10. 10.
    Hassan MI, Waheed A, Yadav S, Singh TP, Ahmad F (2008) Zinc alpha 2-glycoprotein: a multidisciplinary protein. Mol Cancer Res 6:892–906PubMedCrossRefGoogle Scholar
  11. 11.
    Falvella FS, Spinola M, Pignatiello C, Noci S, Conti B, Pastorino U, Carbone A, Dragani TA (2008) AZGP1 mRNA levels in normal human lung tissue correlate with lung cancer disease status. Oncogene 27:1650–1656PubMedCrossRefGoogle Scholar
  12. 12.
    Bing C (2011) Lipid mobilization in cachexia: mechanisms and mediators. Curr Opin Support Palliat Care 5:356–360PubMedGoogle Scholar
  13. 13.
    Huang Y, Li LZ, Zhang CZ, Yi C, Liu LL, Zhou X, Xie GB, Cai MY, Li Y, Yun JP (2012) Decreased expression of zinc-alpha2-glycoprotein in hepatocellular carcinoma associates with poor prognosis. J Transl Med 10:106PubMedCrossRefGoogle Scholar
  14. 14.
    Information, NCBI. SPDEF SAM pointed domain containing ets transcription factor [Homo sapiens] 2012; Available from:
  15. 15.
    Steffan JJ, Koul HK (2011) Prostate derived ETS factor (PDEF): a putative tumor metastasis suppressor. Cancer Lett 310:109–117PubMedCrossRefGoogle Scholar
  16. 16.
    Schaefer JS, Sabherwal Y, Shi HY, Sriraman V, Richards J, Minella A, Turner DP, Watson DK, Zhang M (2010) Transcriptional regulation of p21/CIP1 cell cycle inhibitor by PDEF controls cell proliferation and mammary tumor progression. J Biol Chem 285:11258–11269PubMedCrossRefGoogle Scholar
  17. 17.
    Findlay VJ, Turner DP, Moussa O, Watson DK (2008) MicroRNA-mediated inhibition of prostate-derived Ets factor messenger RNA translation affects prostate-derived Ets factor regulatory networks in human breast cancer. Cancer Res 68:8499–8506PubMedCrossRefGoogle Scholar
  18. 18.
    Davidson B, Stavnes HT, Holth A, Chen X, Yang Y, IeM S, Wang TL (2011) Gene expression signatures differentiate ovarian/peritoneal serous carcinoma from breast carcinoma in effusions. J Cell Mol Med 15:535–544PubMedCrossRefGoogle Scholar
  19. 19.
    Langerød A, Zhao H, Borgan Ø, Nesland JM, Bukholm IR, Ikdahl T, Kåresen R, Børresen-Dale AL, Jeffrey SS (2007) TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res 9:R30PubMedCrossRefGoogle Scholar
  20. 20.
    Hetland TE, Nymoen DA, Emilsen E, Kærn J, Tropé CG, Flørenes VA, Davidson B (2012) MGST1 expression in serous ovarian carcinoma differs at various anatomic sites, but is unrelated to chemoresistance or survival. Gynecol Oncol 126:460–465PubMedCrossRefGoogle Scholar
  21. 21.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT–PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034Google Scholar
  22. 22.
    Canales RD, Luo Y, Willey JC, Austermiller B, Barbacioru CC, Boysen C, Hunkapiller K, Jensen RV, Knight CR, Lee KY, Ma Y, Maqsodi B, Papallo A, Peters EH, Poulter K, Ruppel PL, Samaha RR, Shi L, Yang W, Zhang L, Goodsaid FM (2006) Evaluation of DNA microarray results with quantitative gene expression platforms. Nat Biotechnol 24:1115–1122PubMedCrossRefGoogle Scholar
  23. 23.
    Yuan Y et al (2009) Expression of the folate receptor genes FOLR1 and FOLR3 differentiates ovarian carcinoma from breast carcinoma and malignant mesothelioma in serous effusions. Hum Pathol 40:1453–1460PubMedCrossRefGoogle Scholar
  24. 24.
    Yuan Y, Nymoen DA, Stavnes HT, Rosnes AK, Bjørang O, Wu C, Nesland JM, Davidson B (2009) Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol 33:1673–1682PubMedCrossRefGoogle Scholar
  25. 25.
    Yuan Y, Dong HP, Nymoen DA, Nesland JM, Wu C, Davidson B (2011) PINCH-2 expression in cancers involving serosal effusions using quantitative PCR. Cytopathology 22:22–29PubMedCrossRefGoogle Scholar
  26. 26.
    Brenne K, Nymoen DA, Hetland TE, Trope CG, Davidson B (2012) Expression of the Ets transcription factor EHF in serous ovarian carcinoma effusions is a marker of poor survival. Hum Pathol 43:496–505PubMedCrossRefGoogle Scholar
  27. 27.
    Bock AJ, Nymoen DA, Brenne K, Kærn J, Davidson B (2012) SCARA3 mRNA is overexpressed in ovarian carcinoma compared with breast carcinoma effusions. Hum Pathol 43:669–674PubMedCrossRefGoogle Scholar
  28. 28.
    Brenne K, Nymoen DA, Reuven R, Davidson B (2012) PRAME (Preferentially Expressed Antigen of Melanoma) is a novel marker for differentiating serous carcinoma from malignant mesothelioma. Am J Clin Pathol 137:240–247PubMedCrossRefGoogle Scholar
  29. 29.
    Brusegard K, Stavnes HT, Nymoen DA, Flatmark K, Trope' CG, Davidson B (2012) Rab25 is overexpressed in Müllerian serous carcinoma compared to malignant mesothelioma. Virchows Arch 460:193–202PubMedCrossRefGoogle Scholar
  30. 30.
    Gao JJ, Gao ZH, Zhao CR, Yuan Y, Cui SX, Zhang XF, Cheng YN, Xu WF, Tang W, Qu XJ (2011) LYP, a novel bestatin derivative, inhibits cell growth and suppresses APN/CD13 activity in human ovarian carcinoma cells more potently than bestatin. Invest New Drugs 29:574–582PubMedCrossRefGoogle Scholar
  31. 31.
    Yamashita M, Kajiyama H, Terauchi M, Shibata K, Ino K, Nawa A, Mizutani S, Kikkawa F (2007) Involvement of aminopeptidase N in enhanced chemosensitivity to paclitaxel in ovarian carcinoma in vitro and in vivo. Int J Cancer 120:2243–2250PubMedCrossRefGoogle Scholar
  32. 32.
    van Hensbergen Y, Broxterman HJ, Rana S, van Diest PJ, Duyndam MC, Hoekman K, Pinedo HM, Boven E (2004) Reduced growth, increased vascular area, and reduced response to cisplatin in CD13-overexpressing human ovarian cancer xenografts. Clin Cancer Res 10:1180–1191PubMedCrossRefGoogle Scholar
  33. 33.
    Ranogajec I, Jakić-Razumović J, Puzović V, Gabrilovac J (2012) Prognostic value of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients. Med Oncol 29:561–569PubMedCrossRefGoogle Scholar
  34. 34.
    Bundred NJ, Walker RA, Everington D, White GK, Stewart HJ, Miller WR (1990) Is apocrine differentiation in breast carcinoma of prognostic significance? Br J Cancer 62:113–117PubMedCrossRefGoogle Scholar
  35. 35.
    Chaubert P, Hurlimann J (1992) Mammary origin of metastases. Immunohistochemical determination. Arch Pathol Lab Med 116:1181–1188PubMedGoogle Scholar
  36. 36.
    Dubois V, Delort L, Mishellany F, Jarde T, Billard H, Lequeux C, Damour O, Penault-Llorca F, Vasson MP, Caldefie-Chezet F (2010) Zinc-alpha2-glycoprotein: a new biomarker of breast cancer? Anticancer Res 30:2919–2925PubMedGoogle Scholar
  37. 37.
    Parris TZ, Danielsson A, Nemes S, Kovács A, Delle U, Fallenius G, Möllerström E, Karlsson P, Helou K (2010) Clinical implications of gene dosage and gene expression patterns in diploid breast carcinoma. Clin Cancer Res 16:3860–3874PubMedCrossRefGoogle Scholar
  38. 38.
    Díez-Itza I, Sánchez LM, Allende MT, Vizoso F, Ruibal A, López-Otín C (1993) Zn-alpha 2-glycoprotein levels in breast cancer cytosols and correlation with clinical, histological and biochemical parameters. Eur J Cancer 29A:1256–1260PubMedCrossRefGoogle Scholar
  39. 39.
    Ghadersohi A, Sood AK (2001) Prostate epithelium-derived Ets transcription factor mRNA is overexpressed in human breast tumors and is a candidate breast tumor marker and a breast tumor antigen. Clin Cancer Res 7:2731–2738PubMedGoogle Scholar
  40. 40.
    Bölke E, Orth K, Gerber PA, Lammering G, Mota R, Peiper M, Matuschek C, Budach W, Rusnak E, Shaikh S, Dogan B, Prisack HB, Bojar H (2009) Gene expression of circulating tumour cells in breast cancer patients. Eur J Med Res 14:426–432PubMedCrossRefGoogle Scholar
  41. 41.
    Lacroix M (2006) Significance, detection and markers of disseminated breast cancer cells. Endocr Relat Cancer 13:1033–1067PubMedCrossRefGoogle Scholar
  42. 42.
    Sood AK, Saxena R, Groth J, Desouki MM, Cheewakriangkrai C, Rodabaugh KJ, Kasyapa CS, Geradts J (2007) Expression characteristics of prostate-derived Ets factor support a role in breast and prostate cancer progression. Hum Pathol 38:1628–1638PubMedCrossRefGoogle Scholar
  43. 43.
    Feldman RJ, Sementchenko VI, Gayed M, Fraig MM, Watson DK (2003) Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Res 63:4626–4631PubMedGoogle Scholar
  44. 44.
    Turcotte S, Forget MA, Beauseigle D, Nassif E, Lapointe R (2007) Prostate-derived Ets transcription factor overexpression is associated with nodal metastasis and hormone receptor positivity in invasive breast cancer. Neoplasia 9:788–796PubMedCrossRefGoogle Scholar
  45. 45.
    Ghadersohi A, Pan D, Fayazi Z, Hicks DG, Winston JS, Li F (2007) Prostate-derived Ets transcription factor (PDEF) downregulates survivin expression and inhibits breast cancer cell growth in vitro and xenograft tumor formation in vivo. Breast Cancer Res Treat 102:19–30PubMedCrossRefGoogle Scholar
  46. 46.
    Tjensvoll K, Gilje B, Oltedal S, Shammas VF, Kvaløy JT, Heikkilä R, Nordgård O (2009) A small subgroup of operable breast cancer patients with poor prognosis identified by quantitative real-time RT–PCR detection of mammaglobin A and trefoil factor 1 mRNA expression in bone marrow. Breast Cancer Res Treat 116:329–338PubMedCrossRefGoogle Scholar
  47. 47.
    Rodabaugh KJ, Mhawech-Fauceglia P, Groth J, Lele S, Sood AK (2007) Prostate-derived Ets factor is overexpressed in serous epithelial ovarian tumors. Int J Gynecol Pathol 26:10–15PubMedCrossRefGoogle Scholar
  48. 48.
    Ghadersohi A, Odunsi K, Zhang S, Azrak RG, Bundy BN, Manjili MH, Li F (2008) Prostate-derived Ets transcription factor as a favorable prognostic marker in ovarian cancer patients. Int J Cancer 123:1376–1384PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Helene Tuft Stavnes
    • 1
  • Dag André Nymoen
    • 1
  • Anita Langerød
    • 2
  • Arild Holth
    • 1
  • Anne-Lise Børresen Dale
    • 2
    • 3
  • Ben Davidson
    • 1
    • 3
    • 4
    Email author
  1. 1.Division of Pathology, Norwegian Radium HospitalOslo University HospitalOsloNorway
  2. 2.Department of Genetics, Institute for Cancer ResearchNorwegian Radium HospitalOsloNorway
  3. 3.Faculty of Medicine, Institute of Clinical MedicineUniversity of OsloOsloNorway
  4. 4.Division of Pathology, Norwegian Radium HospitalOslo University HospitalOsloNorway

Personalised recommendations