Virchows Archiv

, Volume 461, Issue 6, pp 647–653 | Cite as

BMI1 expression identifies subtypes of Merkel cell carcinoma

  • Maria Kouzmina
  • Valtteri Häyry
  • Junnu Leikola
  • Caj Haglund
  • Tom Böhling
  • Virve Koljonen
  • Jaana Hagström
Original Article


Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine carcinoma. The aims of this study were to investigate the expression of the transcription factors B-lymphoma Moloney murine leukaemia virus insertion (BMI1), myelocytomatosis viral oncogene homologue (c-Myc) and Snail in MCC tumour specimens and to examine the relationship of these markers to Merkel cell polyoma virus (MCV). The study comprised of 133 patients with primary MCC. The expression of BMI1, Snail and c-Myc protein was assessed by immunohistochemistry and compared with clinical parameters, MCV status and patient survival. The presence of MCV was inversely correlated with the expression of BMI1 protein. Tumours expressing BMI1 protein more often presented with lymph node metastases. Snail protein expression was decreased in cases with metastatic dissemination. This study identified two subgroups of MCC: tumours expressing BMI1 but negative for MCV DNA and tumours negative for BMI1 expression but positive for MCV. Importantly, BMI1-positive cases often presented with lymph node metastases. Combined, these results suggest that subtypes of this malignancy exist.


Merkel cell carcinoma BMI1 Merkel cell polyoma virus 



American Joint Committee on Cancer


B-lymphoma Moloney murine leukaemia virus insertion




Myelocytomatosis viral oncogene homologue


Deoxyribonucleic acid


Large T 3


Merkel cell carcinoma


Merkel cell polyoma virus


Polymerase chain reaction


Thyroid transcription factor-1


Ultraviolet B



The authors thank Päivi Peltokangas, Tuire Koski and Elina Aspiala for excellent technical assistance. Harri Sihto is thanked for MCV analysis and Timo Pessi for assistance with statistical analysis. Funding of this study was from departmental sources only.

Conflict of interest

Each author declares no financial conflicts of interest with regard to the data presented in this manuscript.


  1. 1.
    Szeder V, Grim M, Kucera J et al (2003) Neurotrophin-3 signaling in mammalian Merkel cell development. Dev Dyn 228:623–629PubMedCrossRefGoogle Scholar
  2. 2.
    Lucarz A, Brand G (2007) Current considerations about Merkel cells. Eur J Cell Biol 86:243–251PubMedCrossRefGoogle Scholar
  3. 3.
    Winkelmann RK (1977) The Merkel cell system and a comparison between it and the neurosecretory or APUD cell system. J Invest Dermatol 69:41–46PubMedCrossRefGoogle Scholar
  4. 4.
    Grim M, Halata Z (2000) Developmental origin of avian Merkel cells. Anat Embryol (Berl) 202:401–410CrossRefGoogle Scholar
  5. 5.
    Sidhu GS, Chandra P, Cassai ND (2005) Merkel cells, normal and neoplastic: an update. Ultrastruct Pathol 29:287–294PubMedCrossRefGoogle Scholar
  6. 6.
    Compton CC, Regauer S, Seiler GR et al (1990) Human Merkel cell regeneration in skin derived from cultured keratinocyte grafts. Lab Invest 63:233–241PubMedGoogle Scholar
  7. 7.
    Brown JA, Smoller BR (2009) Merkel cell carcinoma: what is it, what will it do and where will it go? What role should the pathologist play in reporting this information? J Cutan Pathol 36:924–927PubMedCrossRefGoogle Scholar
  8. 8.
    Calder KB, Smoller BR (2010) New insights into Merkel cell carcinoma. Adv Anat Pathol 17:155–161. doi: 10.1097/PAP.0b013e3181d97836 PubMedCrossRefGoogle Scholar
  9. 9.
    Hwang JH, Alanen K, Dabbs KD et al (2008) Merkel cell carcinoma with squamous and sarcomatous differentiation. J Cutan Pathol 35:955–959PubMedCrossRefGoogle Scholar
  10. 10.
    Saeb-Lima M, Montante-Montes de Oca D, Albores-Saavedra J (2008) Merkel cell carcinoma with eccrine differentiation: a clinicopathologic study of 7 cases. Ann Diagn Pathol 12:410–414PubMedCrossRefGoogle Scholar
  11. 11.
    Cooper L, Debono R, Alsanjari N et al (2000) Merkel cell tumour with leiomyosarcomatous differentiation. Histopathology 36:540–543PubMedCrossRefGoogle Scholar
  12. 12.
    Eusebi V, Damiani S, Pasquinelli G et al (2000) Small cell neuroendocrine carcinoma with skeletal muscle differentiation: report of three cases. Am J Surg Pathol 24:223–230PubMedCrossRefGoogle Scholar
  13. 13.
    Tan KB, Murali R, Karim RZ et al (2008) Merkel cell carcinoma with fibrosarcomatous differentiation. Pathology 40:314–316PubMedCrossRefGoogle Scholar
  14. 14.
    Van Keymeulen A, Mascre G, Youseff KK et al (2009) Epidermal progenitors give rise to Merkel cells during embryonic development and adult homeostasis. J Cell Biol 187(1):91–100PubMedCrossRefGoogle Scholar
  15. 15.
    Vaigot P, Pisani A, Darmon YM et al (1987) The majority of epidermal Merkel cells are non-proliferative: a quantitative immunofluorescence analysis. Acta Derm Venereol 67:517–520PubMedGoogle Scholar
  16. 16.
    Moll I, Zieger W, Schmelz M (1996) Proliferative Merkel cells were not detected in human skin. Arch Dermatol Res 288:184–187PubMedCrossRefGoogle Scholar
  17. 17.
    Ezeh UI, Turek PJ, Reijo RA et al (2005) Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer 104:2255–2265. doi: 10.1002/cncr.21432 PubMedCrossRefGoogle Scholar
  18. 18.
    Monk M, Holding C (2001) Human embryonic genes re-expressed in cancer cells. Oncogene 20:8085–8091. doi: 10.1038/sj.onc.1205088 PubMedCrossRefGoogle Scholar
  19. 19.
    Al-Hajj M (2007) Cancer stem cells and oncology therapeutics. Curr Opin Oncol 19:61–64. doi: 10.1097/CCO.0b013e328011a8d6 PubMedGoogle Scholar
  20. 20.
    Ailles LE, Weissman IL (2007) Cancer stem cells in solid tumors. Curr Opin Biotechnol 18:460–466. doi: 10.1016/j.copbio.2007.10.007 PubMedCrossRefGoogle Scholar
  21. 21.
    Abbas O, Bhawan J (2011) Expression of stem cell markers nestin and cytokeratin 15 and 19 in cutaneous malignancies. J Eur Acad Dermatol Venereol 25:311–316. doi: 10.1111/j.1468-3083.2010.03791.x PubMedCrossRefGoogle Scholar
  22. 22.
    Leung C, Lingbeek M, Shakhova O et al (2004) Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428:337–341. doi: 10.1038/nature02385 PubMedCrossRefGoogle Scholar
  23. 23.
    Mihic-Probst D, Kuster A, Kilgus S et al (2007) Consistent expression of the stem cell renewal factor BMI-1 in primary and metastatic melanoma. Int J Cancer 121:1764–1770. doi: 10.1002/ijc.22891 PubMedCrossRefGoogle Scholar
  24. 24.
    Bracken AP, Dietrich N, Pasini D et al (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 20:1123–1136. doi: 10.1101/gad.381706 PubMedCrossRefGoogle Scholar
  25. 25.
    Ambler CA, Maatta A (2009) Epidermal stem cells: location, potential and contribution to cancer. J Pathol 217:206–216. doi: 10.1002/path.2468 PubMedCrossRefGoogle Scholar
  26. 26.
    Guney I, Wu S, Sedivy JM (2006) Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci U S A 103:3645–3650. doi: 10.1073/pnas.0600069103 PubMedCrossRefGoogle Scholar
  27. 27.
    Nakamura M, Tokura Y (2011) Epithelial–mesenchymal transition in the skin. J Dermatol Sci 61:7–13. doi: 10.1016/j.jdermsci.2010.11.015 PubMedCrossRefGoogle Scholar
  28. 28.
    Feng H, Shuda M, Chang Y et al (2008) Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–1100PubMedCrossRefGoogle Scholar
  29. 29.
    Foulongne V, Kluger N, Dereure O et al (2008) Merkel cell polyomavirus and Merkel cell carcinoma, France. Emerg Infect Dis 14:1491–1493PubMedCrossRefGoogle Scholar
  30. 30.
    Becker JC, Houben R, Ugurel S et al (2009) MC polyomavirus is frequently present in Merkel cell carcinoma of European patients. J Invest Dermatol 129:248–250PubMedCrossRefGoogle Scholar
  31. 31.
    Sihto H, Kukko H, Koljonen V et al (2009) Clinical factors associated with Merkel cell polyomavirus infection in Merkel cell carcinoma. J Natl Cancer Inst 101:938–945PubMedCrossRefGoogle Scholar
  32. 32.
    Garneski KM, Warcola AH, Feng Q et al (2009) Merkel cell polyomavirus is more frequently present in North American than Australian Merkel cell carcinoma tumors. J Invest Dermatol 129:246–248PubMedCrossRefGoogle Scholar
  33. 33.
    Shuda M, Feng H, Kwun HJ et al (2008) T antigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci U S A 105:16272–16277PubMedCrossRefGoogle Scholar
  34. 34.
    Alison MR, Lim SM, Nicholson LJ (2011) Cancer stem cells: problems for therapy? J Pathol 223:147–161. doi: 10.1002/path.2793 PubMedCrossRefGoogle Scholar
  35. 35.
    Edge SB, Byrd DR, Compton CC (eds) (2010) Merkel cell carcinoma. Springer, New York, pp 315–323Google Scholar
  36. 36.
    Brunner M, Thurnher D, Pammer J et al (2008) Expression of VEGF-A/C, VEGF-R2, PDGF-alpha/beta, c-kit, EGFR, Her-2/Neu, Mcl-1 and Bmi-1 in Merkel cell carcinoma. Mod Pathol 21:876–884PubMedCrossRefGoogle Scholar
  37. 37.
    Haga K, Ohno S, Yugawa T et al (2007) Efficient immortalization of primary human cells by p16INK4a-specific short hairpin RNA or Bmi-1, combined with introduction of hTERT. Cancer Sci 98:147–154. doi: 10.1111/j.1349-7006.2006.00373.x PubMedCrossRefGoogle Scholar
  38. 38.
    Bachmann IM, Puntervoll HE, Otte AP et al (2008) Loss of BMI-1 expression is associated with clinical progress of malignant melanoma. Mod Pathol 21:583–590. doi: 10.1038/modpathol.2008.17 PubMedCrossRefGoogle Scholar
  39. 39.
    Reinisch CM, Uthman A, Erovic BM et al (2007) Expression of BMI-1 in normal skin and inflammatory and neoplastic skin lesions. J Cutan Pathol 34:174–180. doi: 10.1111/j.1600-0560.2006.00587.x PubMedCrossRefGoogle Scholar
  40. 40.
    Miller RW, Rabkin CS (1999) Merkel cell carcinoma and melanoma: etiological similarities and differences. Cancer Epidemiol Biomarkers Prev 8:153–158PubMedGoogle Scholar
  41. 41.
    Tai PT, Yu E, Winquist E et al (2000) Chemotherapy in neuroendocrine/Merkel cell carcinoma of the skin: case series and review of 204 cases. J Clin Oncol 18:2493–2499PubMedGoogle Scholar
  42. 42.
    Li J, Gong LY, Song LB et al (2010) Oncoprotein Bmi-1 renders apoptotic resistance to glioma cells through activation of the IKK-nuclear factor-kappaB pathway. Am J Pathol 176:699–709. doi: 10.2353/ajpath.2010.090502 PubMedCrossRefGoogle Scholar
  43. 43.
    Lee K, Adhikary G, Balasubramanian S et al (2008) Expression of Bmi-1 in epidermis enhances cell survival by altering cell cycle regulatory protein expression and inhibiting apoptosis. J Invest Dermatol 128:9–17. doi: 10.1038/sj.jid.5700949 PubMedCrossRefGoogle Scholar
  44. 44.
    Cohen KJ, Hanna JS, Prescott JE et al (1996) Transformation by the Bmi-1 oncoprotein correlates with its subnuclear localization but not its transcriptional suppression activity. Mol Cell Biol 16:5527–5535PubMedGoogle Scholar
  45. 45.
    Becker KF, Rosivatz E, Blechschmidt K et al (2007) Analysis of the E-cadherin repressor Snail in primary human cancers. Cells Tissues Organs 185:204–212. doi: 10.1159/000101321 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Maria Kouzmina
    • 1
    • 6
  • Valtteri Häyry
    • 2
    • 6
  • Junnu Leikola
    • 3
  • Caj Haglund
    • 4
  • Tom Böhling
    • 5
  • Virve Koljonen
    • 3
    • 6
  • Jaana Hagström
    • 7
    • 8
  1. 1.Department of Oral and Maxillofacial SurgeryHelsinki University Central HospitalHelsinkiFinland
  2. 2.Department of Otorhinolaryngology—Head and Neck SurgeryHelsinki University Central HospitalHelsinkiFinland
  3. 3.Department of Plastic SurgeryHelsinki University Central HospitalHelsinkiFinland
  4. 4.Department of Gastroenterological SurgeryHelsinki University Central HospitalHelsinkiFinland
  5. 5.Department of PathologyHelsinki University and HUSLABHelsinkiFinland
  6. 6.Institute of Clinical MedicineHelsinki UniversityHelsinkiFinland
  7. 7.Department of Pathology/Haartman Institute and HUSLABHelsinki University Central HospitalHelsinkiFinland
  8. 8.Department of Oral PathologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations