Virchows Archiv

, Volume 461, Issue 4, pp 367–377

ARID1A expression loss in gastric cancer: pathway-dependent roles with and without Epstein–Barr virus infection and microsatellite instability

  • Hiroyuki Abe
  • Daichi Maeda
  • Rumi Hino
  • Yuya Otake
  • Maya Isogai
  • Aya Shinozaki Ushiku
  • Keisuke Matsusaka
  • Akiko Kunita
  • Tetsuo Ushiku
  • Hiroshi Uozaki
  • Yoko Tateishi
  • Tsunekazu Hishima
  • Yoshiaki Iwasaki
  • Shumpei Ishikawa
  • Masashi Fukayama
Original Article

Abstract

The AT-rich interactive domain 1A gene (ARID1A), which encodes one of the subunits in the Switch/Sucrose Nonfermentable chromatin remodeling complex, carries mutations and is responsible for loss of protein expression in gastric carcinoma, particularly with Epstein–Barr virus (EBV) infection and a microsatellite instability-high phenotype. We used immunohistochemistry to investigate the significance of ARID1A loss in 857 gastric carcinoma cases, including 67 EBV(+) and 136 MLH1-lost gastric carcinomas (corresponding to a microsatellite instability-high phenotype). Loss of ARID1A expression was significantly more frequent in EBV(+) (23/67; 34 %) and MLH1-lost (40/136; 29 %) gastric carcinomas than in EBV(−)MLH1-preserved (32/657; 5 %) gastric carcinomas (P < 0.01). Loss of ARID1A correlated with larger tumor size, advanced invasion depth, lymph node metastasis, and poor prognosis in EBV(−)MLH1-preserved gastric carcinoma. A correlation was found only with tumor size and diffuse-type histology in MLH1-lost gastric carcinoma, but no correlation was observed in EBV(+) gastric carcinoma. Loss of ARID1A expression in EBV(+) gastric carcinoma was highly frequent in the early stage of gastric carcinoma, although EBV infection did not cause downregulation of ARID1A: EBV-positive nasopharyngeal carcinomas (n = 8) and lymphomas (n = 15) failed to show loss of ARID1A, and EBV infection did not cause loss of ARID1A in gastric carcinoma cell lines. Taken together, loss of ARID1A may be an early change in carcinogenesis and may precede EBV infection in gastric epithelial cells, while loss of ARID1A promotes cancer progression in gastric cancer cells without EBV infection or loss of MLH1 expression. Loss of ARID1A has different and pathway-dependent roles in gastric carcinoma.

Keywords

ARID1A Epstein–Barr virus Gastric cancer Microsatellite instability MLH1 

References

  1. 1.
    Jemal A, Center MM, DeSantis C, Ward EM (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19:1893–1907PubMedCrossRefGoogle Scholar
  2. 2.
    Fukayama M (2010) Epstein–Barr virus and gastric carcinoma. Pathol Int 60:337–350PubMedCrossRefGoogle Scholar
  3. 3.
    Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, Ro JY (2002) Epstein–barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. Am J Pathol 160:787–794PubMedCrossRefGoogle Scholar
  4. 4.
    Chong JM, Sakuma K, Sudo M, Ushiku T, Uozaki H, Shibahara J, Nagai H, Funata N, Taniguchi H, Aburatani H, Fukayama M (2003) Global and non-random CpG-island methylation in gastric carcinoma associated with Epstein–Barr virus. Cancer Sci 94:76–80PubMedCrossRefGoogle Scholar
  5. 5.
    Chang MS, Uozaki H, Chong JM, Ushiku T, Sakuma K, Ishikawa S, Hino R, Barua RR, Iwasaki Y, Arai K, Fujii H, Nagai H, Fukayama M (2006) CpG island methylation status in gastric carcinoma with and without infection of Epstein–Barr virus. Clin Cancer Res 12:2995–3002PubMedCrossRefGoogle Scholar
  6. 6.
    Hino R, Uozaki H, Murakami N, Ushiku T, Shinozaki A, Ishikawa S, Morikawa T, Nakaya T, Sakatani T, Takada K, Fukayama M (2009) Activation of DNA methyltransferase 1 by EBV latent membrane protein 2A leads to promoter hypermethylation of PTEN gene in gastric carcinoma. Cancer Res 69:2766–2774PubMedCrossRefGoogle Scholar
  7. 7.
    Leung SY, Yuen ST, Chung LP, Chu KM, Chan AS, Ho JC (1999) hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res 59:159–164PubMedGoogle Scholar
  8. 8.
    Fleisher AS, Esteller M, Wang S, Tamura G, Suzuki H, Yin J, Zou TT, Abraham JM, Kong D, Smolinski KN, Shi YQ, Rhyu MG, Powell SM, James SP, Wilson KT, Herman JG, Meltzer SJ (1999) Hypermethylation of the hMLH1 gene promoter in human gastric cancers with microsatellite instability. Cancer Res 59:1090–1095PubMedGoogle Scholar
  9. 9.
    Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan AS, Tsui WY, Lee SP, Ho SL, Chan AK, Cheng GH, Roberts PC, Rejto PA, Gibson NW, Pocalyko DJ, Mao M, Xu J, Leung SY (2011) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 43:1219–1223PubMedCrossRefGoogle Scholar
  10. 10.
    Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, Lim KH, Ong CK, Huang D, Chin SY, Tan IB, Ng CC, Yu W, Wu Y, Lee M, Wu J, Poh D, Wan WK, Rha SY, So J, Salto-Tellez M, Yeoh KG, Wong WK, Zhu YJ, Futreal PA, Pang B, Ruan Y, Hillmer AM, Bertrand D, Nagarajan N, Rozen S, Teh BT, Tan P (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44:570–574PubMedCrossRefGoogle Scholar
  11. 11.
    Wilson BG, Roberts CW (2011) SWI/SNF nucleosome remodellers and cancer. Nat Rev Cancer 11:481–492PubMedCrossRefGoogle Scholar
  12. 12.
    Huang J, Zhao YL, Li Y, Fletcher JA, Xiao S (2007) Genomic and functional evidence for an ARID1A tumor suppressor role. Genes Chromosomes Cancer 46:745–750PubMedCrossRefGoogle Scholar
  13. 13.
    Jones S, Wang TL, Shih IM, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA, Vogelstein B, Kinzler KW, Velculescu VE, Papadopoulos N (2010) Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 330:228–231PubMedCrossRefGoogle Scholar
  14. 14.
    Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConechy MK, Anglesio MS, Kalloger SE, Yang W, Heravi-Moussavi A, Giuliany R, Chow C, Fee J, Zayed A, Prentice L, Melnyk N, Turashvili G, Delaney AD, Madore J, Yip S, McPherson AW, Ha G, Bell L, Fereday S, Tam A, Galletta L, Tonin PN, Provencher D, Miller D, Jones SJ, Moore RA, Morin GB, Oloumi A, Boyd N, Aparicio SA, Shih IM, Mes-Masson AM, Bowtell DD, Hirst M, Gilks B, Marra MA, Huntsman DG (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363:1532–1543PubMedCrossRefGoogle Scholar
  15. 15.
    Guan B, Wang TL, Shih IM (2011) ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 71:6718–6727PubMedCrossRefGoogle Scholar
  16. 16.
    Maeda D, Mao TL, Fukayama M, Nakagawa S, Yano T, Taketani Y, Shih IM (2010) Clinicopathological significance of loss of ARID1A immunoreactivity in ovarian clear cell carcinoma. Int J Mol Sci 11:5120–5128PubMedCrossRefGoogle Scholar
  17. 17.
    Guan B, Mao TL, Panuganti PK, Kuhn E, Kurman RJ, Maeda D, Chen E, Jeng YM, Wang TL, Shih IM (2011) Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol 35:625–632PubMedCrossRefGoogle Scholar
  18. 18.
    Wiegand KC, Lee AF, Al-Agha OM, Chow C, Kalloger SE, Scott DW, Steidl C, Wiseman SM, Gascoyne RD, Gilks B, Huntsman DG (2011) Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol 224:328–333PubMedCrossRefGoogle Scholar
  19. 19.
    Katagiri A, Nakayama K, Rahman MT, Rahman M, Katagiri H, Ishikawa M, Ishibashi T, Iida K, Otsuki Y, Nakayama S, Miyazaki K (2012) Frequent loss of tumor suppressor ARID1A protein expression in adenocarcinomas/adenosquamous carcinomas of the uterine cervix. Int J Gynecol Cancer 22:208–212PubMedCrossRefGoogle Scholar
  20. 20.
    Jones S, Li M, Parsons DW, Zhang X, Wesseling J, Kristel P, Schmidt MK, Markowitz S, Yan H, Bigner D, Hruban RH, Eshleman JR, Iacobuzio-Donahue CA, Goggins M, Maitra A, Malek SN, Powell S, Vogelstein B, Kinzler KW, Velculescu VE, Papadopoulos N (2012) Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types. Hum Mutat 33:100–103PubMedCrossRefGoogle Scholar
  21. 21.
    Lauren P (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand 64:31–49PubMedGoogle Scholar
  22. 22.
    Imai S, Nishikawa J, Takada K (1998) Cell-to-cell contact as an efficient mode of Epstein–Barr virus infection of diverse human epithelial cells. J Virol 72:4371–4378PubMedGoogle Scholar
  23. 23.
    Iwasaki Y, Chong JM, Hayashi Y, Ikeno R, Arai K, Kitamura M, Koike M, Hirai K, Fukayama M (1998) Establishment and characterization of a human Epstein–Barr virus-associated gastric carcinoma in SCID mice. J Virol 72:8321–8326PubMedGoogle Scholar
  24. 24.
    Mansy SS (2004) Agarose cell block: innovated technique for the processing of urine cytology for electron microscopy examination. Ultrastruct Pathol 28:15–21PubMedGoogle Scholar
  25. 25.
    Shinozaki A, Sakatani T, Ushiku T, Hino R, Isogai M, Ishikawa S, Uozaki H, Takada K, Fukayama M (2010) Downregulation of microRNA-200 in EBV-associated gastric carcinoma. Cancer Res 70:4719–4727PubMedCrossRefGoogle Scholar
  26. 26.
    Lawes DA, SenGupta S, Boulos PB (2003) The clinical importance and prognostic implications of microsatellite instability in sporadic cancer. Eur J Surg Oncol 29:201–212PubMedCrossRefGoogle Scholar
  27. 27.
    Matsusaka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto Y, Takada K, Aburatani H, Fukayama M (2011) Classification of Epstein–Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 71:7187–7197PubMedCrossRefGoogle Scholar
  28. 28.
    Grogg KL, Lohse CM, Pankratz VS, Halling KC, Smyrk TC (2003) Lymphocyte-rich gastric cancer: associations with Epstein–Barr virus, microsatellite instability, histology, and survival. Mod Pathol 16:641–651PubMedCrossRefGoogle Scholar
  29. 29.
    Banine F, Bartlett C, Gunawardena R, Muchardt C, Yaniv M, Knudsen ES, Weissman BE, Sherman LS (2005) SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation. Cancer Res 65:3542–3547PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Hiroyuki Abe
    • 1
  • Daichi Maeda
    • 1
  • Rumi Hino
    • 1
  • Yuya Otake
    • 1
    • 2
  • Maya Isogai
    • 1
  • Aya Shinozaki Ushiku
    • 1
  • Keisuke Matsusaka
    • 1
  • Akiko Kunita
    • 1
  • Tetsuo Ushiku
    • 1
  • Hiroshi Uozaki
    • 1
  • Yoko Tateishi
    • 3
  • Tsunekazu Hishima
    • 3
  • Yoshiaki Iwasaki
    • 4
  • Shumpei Ishikawa
    • 1
  • Masashi Fukayama
    • 1
  1. 1.Department of Pathology, Graduate School of MedicineThe University of TokyoTokyoJapan
  2. 2.Division of Central Clinical Research Laboratory, Nissay HospitalOsakaJapan
  3. 3.Department of Pathology, Tokyo Metropolitan Cancer and Infectious diseases CenterKomagome HospitalTokyoJapan
  4. 4.Department of Surgery, Tokyo Metropolitan Cancer and Infectious diseases CenterKomagome HospitalTokyoJapan

Personalised recommendations