Virchows Archiv

, Volume 460, Issue 3, pp 299–308 | Cite as

Phenotyping of pulmonary carcinoids and a Ki-67-based grading approach

  • Tina Zahel
  • Sabine Krysa
  • Esther Herpel
  • Albrecht Stenzinger
  • Benjamin Goeppert
  • Peter Schirmacher
  • Hans Hoffmann
  • Philipp A. Schnabel
  • Arne WarthEmail author
Original Article


Pulmonary carcinoids (PC) are separated into typical (TC) and atypical carcinoids (ATC). However, the biological behavior cannot be reliably predicted, and in small biopsies differential diagnosis can be challenging. To provide a basis for a grading approach, we analyzed mitoses and the proliferative index (PI; Ki-67) of 200 PC specimens (TC: n = 114; ATC: n = 86). To define suitable diagnostic and to screen for putative therapeutic markers, CD56, CD57, CD99, CD117, TTF-1, synaptophysin, chromogranin A, CK 18, KL-1, epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (Her-2/neu), somatostatin receptor subtype 2A (SSTR2A), thymidylate synthase (TS), and excision repair cross-complementation group 1 (ERCC-1) expression was analyzed. A combination of synaptophysin and cytokeratins is the most sensitive marker panel for PC with unclear histomorphology. Predictive phenotyping revealed that SSTR2A is expressed in >80% of all PC and may be used both, as a diagnostic marker for imaging approaches and as a predictive marker for octreotide-based therapies. We introduced a grading system distinguishing between PC with low and highly aggressive biological behavior similar to the grading system for gastrointestinal neuroendocrine tumors. The system is superior to the classical separation into TC and ATC. This study indicates that PI in addition to mitotic count may improve prediction of the biological behavior of PC and should be validated in prospective studies.


Pulmonary carcinoids Immunomarkers Grading Prognosis Biological behavior Diagnostic marker 



We gratefully acknowledge Ms Bettina Walter (tissue bank of the National Center for Tumor Diseases Heidelberg) and Jennifer Schmitt for excellent technical support.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300. doi: 10.3322/caac.20073 PubMedCrossRefGoogle Scholar
  2. 2.
    Travis WD (ed) (2004) WHO classification of tumours: pathology and genetics of tumours of the lung, pleura, thymus and heart, 1st edn. IARC, LyonGoogle Scholar
  3. 3.
    Rekhtman N (2010) Neuroendocrine tumors of the lung: an update. Arch Pathol Lab Med 134(11):1628–1638. doi: 10.1043/2009-0583-RAR.1 PubMedGoogle Scholar
  4. 4.
    Warth A, Herpel E, Krysa S, Hoffmann H, Schnabel PA, Schirmacher P, Mechtersheimer G, Blaker H (2009) Chromosomal instability is more frequent in metastasized than in non-metastasized pulmonary carcinoids but is not a reliable predictor of metastatic potential. Exp Mol Med 41(5):349–353. doi: 10.3858/emm.2009.41.5.039 PubMedCrossRefGoogle Scholar
  5. 5.
    Ducrocq X, Thomas P, Massard G, Barsotti P, Giudicelli R, Fuentes P, Wihlm JM (1998) Operative risk and prognostic factors of typical bronchial carcinoid tumors. Ann Thorac Surg 65(5):1410–1414. doi: S0003497598000836 PubMedCrossRefGoogle Scholar
  6. 6.
    Warren WH, Gould VE, Faber LP, Kittle CF, Memoli VA (1985) Neuroendocrine neoplasms of the bronchopulmonary tract. A classification of the spectrum of carcinoid to small cell carcinoma and intervening variants. J Thorac Cardiovasc Surg 89(6):819–825PubMedGoogle Scholar
  7. 7.
    Fink G, Krelbaum T, Yellin A, Bendayan D, Saute M, Glazer M, Kramer MR (2001) Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest 119(6):1647–1651PubMedCrossRefGoogle Scholar
  8. 8.
    Travis WD (2010) Advances in neuroendocrine lung tumors. Ann Oncol 21(Suppl 7):vii65–vii71. doi: 10.1093/annonc/mdq380 PubMedCrossRefGoogle Scholar
  9. 9.
    Hage R, de la Riviere AB, Seldenrijk CA, van den Bosch JM (2003) Update in pulmonary carcinoid tumors: a review article. Ann Surg Oncol 10(6):697–704PubMedCrossRefGoogle Scholar
  10. 10.
    Warth A, Krysa S, Zahel T, Hoffmann H, Schirmacher P, Schnabel PA, Herpel E (2010) S100 protein positive sustentacular cells in pulmonary carcinoids and thoracic paragangliomas: differential diagnostic and prognostic evaluation. Pathologe 31(5):379–384. doi: 10.1007/s00292-010-1293-2 PubMedCrossRefGoogle Scholar
  11. 11.
    Skov BG, Holm B, Erreboe A, Skov T, Mellemgaard A (2010) ERCC1 and Ki67 in small cell lung carcinoma and other neuroendocrine tumors of the lung: distribution and impact on survival. J Thorac Oncol 5(4):453–459. doi: 10.1097/JTO.0b013e3181ca063b PubMedCrossRefGoogle Scholar
  12. 12.
    Rindi G, Kloppel G, Alhman H, Caplin M, Couvelard A, de Herder WW, Erikssson B, Falchetti A, Falconi M, Komminoth P, Korner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B (2006) TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Arch 449(4):395–401. doi: 10.1007/s00428-006-0250-1 PubMedCrossRefGoogle Scholar
  13. 13.
    Travis WD, Rush W, Flieder DB, Falk R, Fleming MV, Gal AA, Koss MN (1998) Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 22(8):934–944PubMedCrossRefGoogle Scholar
  14. 14.
    Skuladottir H, Hirsch FR, Hansen HH, Olsen JH (2002) Pulmonary neuroendocrine tumors: incidence and prognosis of histological subtypes. A population-based study in Denmark. Lung Cancer 37(2):127–135PubMedCrossRefGoogle Scholar
  15. 15.
    Klimstra DS, Modlin IR, Adsay NV, Chetty R, Deshpande V, Gonen M, Jensen RT, Kidd M, Kulke MH, Lloyd RV, Moran C, Moss SF, Oberg K, O’Toole D, Rindi G, Robert ME, Suster S, Tang LH, Tzen CY, Washington MK, Wiedenmann B, Yao J (2010) Pathology reporting of neuroendocrine tumors: application of the Delphic consensus process to the development of a minimum pathology data set. Am J Surg Pathol 34(3):300–313. doi: 10.1097/PAS.0b013e3181ce1447 PubMedCrossRefGoogle Scholar
  16. 16.
    Oliveira AM, Tazelaar HD, Myers JL, Erickson LA, Lloyd RV (2001) Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol 25(6):815–819PubMedCrossRefGoogle Scholar
  17. 17.
    Folpe AL, Gown AM, Lamps LW, Garcia R, Dail DH, Zarbo RJ, Schmidt RA (1999) Thyroid transcription factor-1: immunohistochemical evaluation in pulmonary neuroendocrine tumors. Mod Pathol 12(1):5–8PubMedGoogle Scholar
  18. 18.
    Sturm N, Rossi G, Lantuejoul S, Papotti M, Frachon S, Claraz C, Brichon PY, Brambilla C, Brambilla E (2002) Expression of thyroid transcription factor-1 in the spectrum of neuroendocrine cell lung proliferations with special interest in carcinoids. Hum Pathol 33(2):175–182PubMedCrossRefGoogle Scholar
  19. 19.
    Du EZ, Goldstraw P, Zacharias J, Tiffet O, Craig PJ, Nicholson AG, Weidner N, Yi ES (2004) TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol 35(7):825–831PubMedCrossRefGoogle Scholar
  20. 20.
    La Rosa S, Chiaravalli AM, Placidi C, Papanikolaou N, Cerati M, Capella C (2010) TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch 457(4):497–507. doi: 10.1007/s00428-010-0954-0 PubMedCrossRefGoogle Scholar
  21. 21.
    Rindi G, Kloppel G, Couvelard A, Komminoth P, Korner M, Lopes JM, McNicol AM, Nilsson O, Perren A, Scarpa A, Scoazec JY, Wiedenmann B (2007) TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Arch 451(4):757–762. doi: 10.1007/s00428-007-0452-1 PubMedCrossRefGoogle Scholar
  22. 22.
    Mengel M, von Wasielewski R, Wiese B, Rudiger T, Muller-Hermelink HK, Kreipe H (2002) Inter-laboratory and inter-observer reproducibility of immunohistochemical assessment of the Ki-67 labelling index in a large multi-centre trial. J Pathol 198(3):292–299. doi: 10.1002/path.1218 PubMedCrossRefGoogle Scholar
  23. 23.
    Hsu CY, Ho DM, Yang CF, Chiang H (2003) Interobserver reproducibility of MIB-1 labeling index in astrocytic tumors using different counting methods. Mod Pathol 16(9):951–957. doi: 10.1097/01.MP.0000084631.64279.BC PubMedCrossRefGoogle Scholar
  24. 24.
    Dhall D (2009) Interobserver variability in assessing Ki67 proliferative index in gastrointestinal well-differentiated neuroendocrine neoplasms. Mod Pathol 22:116AGoogle Scholar
  25. 25.
    Kosmidis PA (2004) Treatment of carcinoid of the lung. Curr Opin Oncol 16(2):146–149PubMedCrossRefGoogle Scholar
  26. 26.
    Righi L, Volante M, Tavaglione V, Bille A, Daniele L, Angusti T, Inzani F, Pelosi G, Rindi G, Papotti M (2010) Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 ‘clinically aggressive’ cases. Ann Oncol 21(3):548–555. doi: 10.1093/annonc/mdp334 PubMedCrossRefGoogle Scholar
  27. 27.
    Volante M, Brizzi MP, Faggiano A, La Rosa S, Rapa I, Ferrero A, Mansueto G, Righi L, Garancini S, Capella C, De Rosa G, Dogliotti L, Colao A, Papotti M (2007) Somatostatin receptor type 2A immunohistochemistry in neuroendocrine tumors: a proposal of scoring system correlated with somatostatin receptor scintigraphy. Mod Pathol 20(11):1172–1182. doi: 10.1038/modpathol.3800954 PubMedCrossRefGoogle Scholar
  28. 28.
    Rusch VW, Klimstra DS, Venkatraman ES (1996) Molecular markers help characterize neuroendocrine lung tumors. Ann Thorac Surg 62(3):798–809, discussion 809-710PubMedCrossRefGoogle Scholar
  29. 29.
    Rickman OB, Vohra PK, Sanyal B, Vrana JA, Aubry MC, Wigle DA, Thomas CF Jr (2009) Analysis of ErbB receptors in pulmonary carcinoid tumors. Clin Cancer Res 15(10):3315–3324. doi: 10.1158/1078-0432.CCR-08-2549 PubMedCrossRefGoogle Scholar
  30. 30.
    Ceppi P, Volante M, Ferrero A, Righi L, Rapa I, Rosas R, Berruti A, Dogliotti L, Scagliotti GV, Papotti M (2008) Thymidylate synthase expression in gastroenteropancreatic and pulmonary neuroendocrine tumors. Clin Cancer Res 14(4):1059–1064. doi: 10.1158/1078-0432.CCR-07-1513 PubMedCrossRefGoogle Scholar
  31. 31.
    Oberg K, Norheim I, Theodorsson E (1991) Treatment of malignant midgut carcinoid tumours with a long-acting somatostatin analogue octreotide. Acta Oncol 30(4):503–507PubMedCrossRefGoogle Scholar
  32. 32.
    Divisi D, Crisci R (2005) Carcinoid tumors of the lung and multimodal therapy. Thorac Cardiovasc Surg 53(3):168–172. doi: 10.1055/s-2005-837539 PubMedCrossRefGoogle Scholar
  33. 33.
    Nilsson O, Kolby L, Wangberg B, Wigander A, Billig H, William-Olsson L, Fjalling M, Forssell-Aronsson E, Ahlman H (1998) Comparative studies on the expression of somatostatin receptor subtypes, outcome of octreotide scintigraphy and response to octreotide treatment in patients with carcinoid tumours. Br J Cancer 77(4):632–637PubMedCrossRefGoogle Scholar
  34. 34.
    Haug AR, Auernhammer CJ, Wangler B, Schmidt GP, Uebleis C, Goke B, Cumming P, Bartenstein P, Tiling R, Hacker M (2010) 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med 51(9):1349–1356. doi: 10.2967/jnumed.110.075002 PubMedCrossRefGoogle Scholar
  35. 35.
    Bajetta E, Catena L, Procopio G, De Dosso S, Bichisao E, Ferrari L, Martinetti A, Platania M, Verzoni E, Formisano B, Bajetta R (2007) Are capecitabine and oxaliplatin (XELOX) suitable treatments for progressing low-grade and high-grade neuroendocrine tumours? Cancer Chemother Pharmacol 59(5):637–642. doi: 10.1007/s00280-006-0306-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Lyda MH, Weiss LM (2000) Immunoreactivity for epithelial and neuroendocrine antibodies are useful in the differential diagnosis of lung carcinomas. Hum Pathol 31(8):980–987. doi: 10.1053/hupa.2000.9076 PubMedCrossRefGoogle Scholar
  37. 37.
    Kyoda S, Kinoshita S, Takeyama H, Uchida K, Morikawa T (2008) HER-2 protein overexpression in metastatic breast carcinoma found at autopsy. Jpn J Clin Oncol 38(11):743–747. doi: 10.1093/jjco/hyn103 PubMedCrossRefGoogle Scholar
  38. 38.
    Righi L, Papotti MG, Ceppi P, Bille A, Bacillo E, Molinaro L, Ruffini E, Scagliotti GV, Selvaggi G (2010) Thymidylate synthase but not excision repair cross-complementation group 1 tumor expression predicts outcome in patients with malignant pleural mesothelioma treated with pemetrexed-based chemotherapy. J Clin Oncol 28(9):1534–1539. doi: 10.1200/JCO.2009.25.9275 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Tina Zahel
    • 1
  • Sabine Krysa
    • 2
  • Esther Herpel
    • 1
  • Albrecht Stenzinger
    • 1
  • Benjamin Goeppert
    • 1
  • Peter Schirmacher
    • 1
  • Hans Hoffmann
    • 2
  • Philipp A. Schnabel
    • 1
  • Arne Warth
    • 1
    Email author
  1. 1.Institute for PathologyUniversity Hospital HeidelbergHeidelbergGermany
  2. 2.Department of Thoracic SurgeryThoraxklinik HeidelbergHeidelbergGermany

Personalised recommendations