Virchows Archiv

, 459:511 | Cite as

SMAD4 protein expression and cell proliferation in colorectal adenocarcinomas

  • Adriana Handra-LucaEmail author
  • Sylviane Olschwang
  • Jean-François Fléjou
Original Article


The TGFβ signalling pathway is a growth inhibitor system that operates in both normal and tumour cells. Alterations to components of this pathway, including SMAD4, result in resistance to growth inhibition and uncontrolled proliferation. The aim of this study was to analyse the relationships between SMAD4, a key protein in the growth-inhibiting TGFβ pathway; cell proliferation proteins Ki67, p27 and S-phase kinase-associated protein 2 (SKP2); and mismatch repair (MMR) proteins as well as prognostic indicators in colorectal adenocarcinomas. A series of 230 sporadic colorectal adenocarcinomas were studied using tissue microarrays by immunohistochemistry for SMAD4, Ki67, p27, SKP2 and MMR protein (hMLH1, hMSH2 and hMSH6) expression. Protein expression was analysed with respect to pathological prognostic criteria. Loss of SMAD4 nuclear expression (27/230, 12%) correlated with the presence of lymph node metastases, MMR protein expression and the absence of p27 in tumour cells (p = 0.04, p = 0.08 and p = 0.03, respectively). A high Ki67 index did not correlate with SMAD4 expression; however, it did correlate with moderate or poor histological differentiation, SKP2 expression and aberrant or absent MMR protein expression (p = 0.02, p < 0.01 and p < 0.01, respectively). In conclusion, the results of our study suggest that the loss of SMAD4, occurring in 12% of colorectal adenocarcinomas, correlated with the presence of lymph node metastases and absence of p27 expression but not with high cellular proliferation. However, high proliferation correlated with SKP2 and aberrant MMR protein expression. Although the advantage of immunohistochemistry is high throughput, our results allow only an initial evaluation, and subsequent studies, including genetic analyses, are required.


Colon Adenocarcinoma Pathology Proliferation Mismatch repair SMAD4 p27 



Mismatch repair


S-phase kinase-associated protein


Tissue microarray


Tumour node metastasis (classification)



The authors thank the Societé Française de Pathologie. We are grateful to Ema Dragoescu and to Pr P Fouret, and we thank Florence Jourdan, Nicole Sebbagh and Jacques Paries.

Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Massague J (1998) TGF-beta signal transduction. Annu Rev Biochem 67:753–791PubMedCrossRefGoogle Scholar
  2. 2.
    Miyazono K (2000) Positive and negative regulation of TGF-beta signalling. J Cell Sci 113:1101–1109PubMedGoogle Scholar
  3. 3.
    Hahn SA, Schutte M, Hoque AT et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271:350–353PubMedCrossRefGoogle Scholar
  4. 4.
    Miyaki M, Kuroki T (2003) Role of Smad4 (DPC4) inactivation in human cancer. Biochem Biophys Res Commun 306:799–804PubMedCrossRefGoogle Scholar
  5. 5.
    Friedl W, Kruse R, Uhlhaas S et al (1999) Frequent 4-bp deletion in exon 9 of the SMAD4/MADH4 gene in familial juvenile polyposis patients. Genes Chromosomes Cancer 25:403–406PubMedCrossRefGoogle Scholar
  6. 6.
    Howe JR, Roth S, Ringold JC et al (1998) Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science 280:1086–1088PubMedCrossRefGoogle Scholar
  7. 7.
    Blobe GC, Schiemann WP, Lodish HF (2000) Mechanisms of disease: role of transforming growth factor (beta) in human disease. N Engl J Med 342:1350–1358PubMedCrossRefGoogle Scholar
  8. 8.
    Elliott RL, Blobe GC (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23:2078–2093PubMedCrossRefGoogle Scholar
  9. 9.
    Riggins GJ, Kinzler KW, Vogelstein B et al (1997) Frequency of Smad gene mutations in human cancers. Cancer Res 57:2578–2580PubMedGoogle Scholar
  10. 10.
    Schutte M, Hruban RH, Hedrick L et al (1996) DPC4 gene in various tumor types. Cancer Res 56:2527–25230PubMedGoogle Scholar
  11. 11.
    Thiagalingam S, Lengauer C, Leach FS et al (1996) Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat Genet 13:343–346PubMedCrossRefGoogle Scholar
  12. 12.
    Loda M, Cukor B, Tam SW et al (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3:231–234PubMedCrossRefGoogle Scholar
  13. 13.
    Ogino S, Kawasaki T, Kirkner GJ et al (2007) Loss of nuclear p27 (CDKN1B/KIP1) in colorectal cancer is correlated with microsatellite instability and CIMP. Mod Pathol 20:15–22PubMedCrossRefGoogle Scholar
  14. 14.
    Polyak K, Kato JT, Solomon MJ et al (1994) p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev 8:9–22PubMedCrossRefGoogle Scholar
  15. 15.
    Lloyd R, Erickson LA, Jin L et al (1999) p27/kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154:313–323PubMedCrossRefGoogle Scholar
  16. 16.
    Hershko D, Bornstein G, Ben-Izhak O et al (2001) Inverse relation between levels of p27(kip1) and of its ubiquitin ligase subunit SKP2 in colorectal carcinomas. Cancer 91:1745–1751PubMedCrossRefGoogle Scholar
  17. 17.
    Zhang H, Kobayashi R, Galakionov K et al (1995) p19/Skp1 and p45/SKP2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82:915–925PubMedCrossRefGoogle Scholar
  18. 18.
    Bosman F, Carneiro F, Hruban H, Theise N (eds) (2010) WHO classification of digestive tumours, 4th edn. IARC, LyonGoogle Scholar
  19. 19.
    Edge SB, Byrd DR, Compton CC et al (eds) (2010) American Joint Committee on Cancer AJCC cancer staging manual, 7th edn. Springer, New YorkGoogle Scholar
  20. 20.
    Jourdan F, Sebbagh N, Comperat E et al (2003) Tissue microarray technology: validation in colorectal carcinoma and analysis of p53, hMLH1, and hMSH2 immunohistochemical expression. Virchows Arch 443:115–121PubMedCrossRefGoogle Scholar
  21. 21.
    Kononen J, Bubendorf L, Kallioniemi A et al (1998) Tissue microarrays for high-throughput molecular profiling of tumour specimens. Nat Med 4:844–847PubMedCrossRefGoogle Scholar
  22. 22.
    Handra-Luca A, Ruhin B, Lesty C et al (2006) P27, SKP2, and extra-cellular signal-related kinase signalling in human salivary gland mucoepidermoid carcinoma. Oral Oncol 42:1005–1010PubMedCrossRefGoogle Scholar
  23. 23.
    Maitra A, Molberg K, Albores-Saavedra J et al (2000) Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. Am J Pathol 57:1105–1111CrossRefGoogle Scholar
  24. 24.
    Maitra A, Adsay NV, Argani P et al (2003) Multicomponent analysis of the pancreatic adenocarcinoma progression model using a pancreatic intraepithelial neoplasia tissue microarray. Mod Pathol 16:902–912PubMedCrossRefGoogle Scholar
  25. 25.
    Hoos A, Urist MJ, Stojadinovic A et al (2001) Validation of tissue microarrays for immunohistochemical profiling of cancer specimens using the example of human fibroblastic tumors. Am J Pathol 158:1245–1251PubMedCrossRefGoogle Scholar
  26. 26.
    Rigau V, Sebbagh N, Olschwang S et al (2003) Mirosatellite instability in colorectal carcinoma. The comparison of immunohistochemistry and molecular biology suggests a role for hMSH6 immunostaining. Arch Pathol Lab Med 127:694–700PubMedGoogle Scholar
  27. 27.
    Lindor NM, Burgart LJ, Leontovich O et al (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumours. J Clin Oncol 20:1043–1048PubMedCrossRefGoogle Scholar
  28. 28.
    Montgomery E, Goggins M, Zhou S et al (2001) Nuclear localization of Dpc4 (Madh4, SMAD4) in colorectal carcinomas and relation to mismatch repair/transforming growth factor-beta receptor defects. Am J Pathol 158:537–542PubMedCrossRefGoogle Scholar
  29. 29.
    Royce SG, Alsop K, Haydon A et al (2010) The role of SMAD4 in early onset colorectal cancer. Colorectal Dis 12:213–219PubMedCrossRefGoogle Scholar
  30. 30.
    Salovaara R, Roth S, Loukola A et al (2002) Frequent loss of SMAD4/DPC4 protein in colorectal cancers. Gut 51:56–59PubMedCrossRefGoogle Scholar
  31. 31.
    Xie W, Rimm DL, Lin Y et al (2003) Loss of SMAD signalling in human colorectal cancer is associated with advanced disease and poor prognosis. Cancer J 9:302–312PubMedCrossRefGoogle Scholar
  32. 32.
    Xu WQ, Jiang XC, Yu YY et al (2007) Expression of TGF-beta1, TbetaRII and Smad4 in colorectal carcinoma. Exp Mol Pathol 82:284–291PubMedCrossRefGoogle Scholar
  33. 33.
    Wilentz RE, Su GH, Dai JL et al (2000) Immunohistochemical labeling for Dpc4 mirrors genetic status in pancreatic adenocarcinomas. A new marker of DPC4 inactivation. Am J Pathol 156:37–43PubMedCrossRefGoogle Scholar
  34. 34.
    Alazzouzi H, Alhopuro P, Salovaara R et al (2005) SMAD4 as a prognostic marker in colorectal cancer. Clin Cancer Res 11:2606–2611PubMedCrossRefGoogle Scholar
  35. 35.
    Alhopuro P, Alazzouzi H, Sammalkorpi H et al (2005) SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clin Cancer Res 11:6311–6316PubMedCrossRefGoogle Scholar
  36. 36.
    Tanaka T, Watanabe T, Kazama Y et al (2006) Chromosome 18q deletion and Smad4 protein inactivation correlate with liver metastasis: a study matched for T- and N-classification. Br J Cancer 95:1562–1567PubMedCrossRefGoogle Scholar
  37. 37.
    Miyaki M, Iijima T, Konishi M et al (1999) Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis. Oncogene 20:3098–3103CrossRefGoogle Scholar
  38. 38.
    Koyama M, Ito M, Nagai H et al (1999) Inactivation of both alleles of the DPC4/SMAD4 gene in advanced colorectal cancers: identification of seven novel somatic mutations in tumours from Japanese patients. Mutat Res 406:71–77PubMedCrossRefGoogle Scholar
  39. 39.
    Tanaka T, Watanabe T, Kazama Y, Tanaka J et al (2008) Loss of Smad4 protein expression and 18qLOH as molecular markers indicating lymph node metastasis in colorectal cancer—a study matched for tumor depth and pathology. J Surg Oncol 97:69–73PubMedCrossRefGoogle Scholar
  40. 40.
    Losi L, Bouzourene H, Benhattar J (2007) Loss of Smad4 expression predicts liver metastasis in human colorectal cancer. Oncol Rep 17:1095–1099PubMedGoogle Scholar
  41. 41.
    Xiao DS, Wen JF, Li JH et al (2006) Effect of DPC4 gene on invasion and metastasis of colorectal carcinoma cells. Acta Biochim Biophys Sin (Shanghai) 38:883–892CrossRefGoogle Scholar
  42. 42.
    Zhang B, Halder SK, Kashikar ND et al (2010) Antimetastatic role of Smad4 signaling in colorectal cancer. Gastroenterology 138:969–980PubMedCrossRefGoogle Scholar
  43. 43.
    Dai JL, Bansal RK, Kern SE (1999) G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: phenotypes reversed by a tumorigenic mutation. Proc Natl Acad Sci U S A 96:1427–1432PubMedCrossRefGoogle Scholar
  44. 44.
    Halder SK, Beauchamp RD, Datta PK (2005) Smad7 induces tumorigenicity by blocking TGF-beta-induced growth inhibition and apoptosis. Exp Cell Res 307:231–246PubMedCrossRefGoogle Scholar
  45. 45.
    Schwarte-Waldhoff I, Klein S, Blass-Kampmann S et al (1999) DPC4/SMAD4 mediated tumor suppression of colon carcinoma cells is associated with reduced urokinase expression. Oncogene 18:3152–3158PubMedCrossRefGoogle Scholar
  46. 46.
    Volmer MW, Radacz Y, Hahn SA et al (2004) Tumour suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: landscaping activity of Smad4 as revealed by a “secretome” analysis. Proteomics 4:1324–1334PubMedCrossRefGoogle Scholar
  47. 47.
    Reinacher-Schick A, Baldus S, Romdhana B et al (2004) Loss of Smad4 correlates with loss of the invasion suppressor E-cadherin in advanced colorectal carcinomas. J Pathol 202:412–420PubMedCrossRefGoogle Scholar
  48. 48.
    Schwarte-Waldhoff I, Schmiegel W (2002) Smad4 transcriptional pathways and angiogenesis. Int J Gastrointest Cancer 31:47–59PubMedCrossRefGoogle Scholar
  49. 49.
    DeVita VR, Hellman S, Rosenberg SA (eds) (2005) Cancer principles and practice of oncology, 7th edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  50. 50.
    Biankin AV, Biankin SA, Kench JG et al (2002) Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut 50:861–868PubMedCrossRefGoogle Scholar
  51. 51.
    Hill KA, Wang KL, Stryker SJ, Gupta R, Weinrach DM, Rao MS (2004) Comparative analysis of cell adhesion molecules, cell cycle regulatory proteins, mismatch repair genes, cyclooxygenase-2, and DPC4 in carcinomas arising in inflammatory bowel disease and sporadic colon cancer. Oncol Rep 11:951–956PubMedGoogle Scholar
  52. 52.
    Kang YK, Kim WH, Jang JJ (2002) Expression of G1-S modulators (p53, p16, p27, cyclin D1, Rb) and Smad4/Dpc4 in intrahepatic cholangiocarcinoma. Hum Pathol 33:877–883PubMedCrossRefGoogle Scholar
  53. 53.
    Zeng L, Rowland RG, Lele SM et al (2004) Apoptosis incidence and protein expression of p53, TGF-beta receptor II, p27Kip1, and Smad4 in benign, premalignant, and malignant human prostate. Hum Pathol 35:290–297PubMedCrossRefGoogle Scholar
  54. 54.
    Lecanda J, Ganapathy V, D’Aquino-Ardalan C et al (2009) TGFbeta prevents proteasomal degradation of the cyclin-dependent kinase inhibitor p27kip1 for cell cycle arrest. Cell Cycle 8:742–756PubMedCrossRefGoogle Scholar
  55. 55.
    Ciaparrone M, Yamamoto H, Yao Y et al (1998) Localization and expression of p27KIP1 in multistage colorectal carcinogenesis. Cancer Res 58:114–122PubMedGoogle Scholar
  56. 56.
    Palmqvist R, Stenling R, Oberg A et al (1999) Prognostic significance of p27(Kip1) expression in colorectal cancer: a clinico-pathological characterization. J Pathol 188:18–23PubMedCrossRefGoogle Scholar
  57. 57.
    Thomas GV, Szigeti K, Murphy M et al (1998) Down-regulation of p27 is associated with development of colorectal adenocarcinoma metastases. Am J Pathol 153:681–687PubMedCrossRefGoogle Scholar
  58. 58.
    Katayose Y, Kim M, Rakkar AN et al (1997) Promoting apoptosis: a novel activity associated with the cyclin-dependent kinase inhibitor p27. Cancer Res 57:5441–5445PubMedGoogle Scholar
  59. 59.
    Liu DF, Ferguson K, Cooper GS et al (1999) p27 cell-cycle inhibitor is inversely correlated with lymph node metastases in right-sided colon cancer. J Clin Lab Anal 13:291–295PubMedCrossRefGoogle Scholar
  60. 60.
    Yao J, Eu KW, Seow-Choen F et al (2000) Down-regulation of p27 is a significant predictor of poor overall survival and may facilitate metastasis in colorectal carcinomas. Int J Cancer 89:213–216PubMedCrossRefGoogle Scholar
  61. 61.
    Shapira M, Ben-Izhak O, Bishara B et al (2004) Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100:1615–1621PubMedCrossRefGoogle Scholar
  62. 62.
    Shapira M, Ben-Izhak O, Linn S et al (2005) The prognostic impact of the ubiquitin ligase subunits SKP2 and Cks1 in colorectal carcinoma. Cancer 103:1336–1346PubMedCrossRefGoogle Scholar
  63. 63.
    Nakayama K, Nagahama H, Minamishima YA et al (2000) Targeted disruption of SKP2 results in accumulation of cyclin E and p27 (Kip), polyploidy and centrosome duplication. EMBO J 19:2069–2081PubMedCrossRefGoogle Scholar
  64. 64.
    Li JQ, Wu F, Masaki T et al (2004) Correlation of Skp2 with carcinogenesis, invasion, metastasis, and prognosis in colorectal tumors. Int J Oncol 25:87–95PubMedGoogle Scholar
  65. 65.
    Woodford-Richens KL, Rowan AJ, Gorman P et al (2001) SMAD4 mutations in colorectal cancer probably occur before chromosomal instability, but after divergence of the microsatellite instability pathway. Proc Natl Acad Sci U S A 98:9719–9723PubMedCrossRefGoogle Scholar
  66. 66.
    Grady WM, Myeroff LL, Swinler SE et al (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res 59:320–324PubMedGoogle Scholar
  67. 67.
    Iacopetta BJ, Welch J, Soong R et al (1998) Mutation of the transforming growth factor-beta type II receptor gene in right-sided colorectal cancer: relationship to clinicopathological features and genetic alterations. J Pathol 184:390–395PubMedCrossRefGoogle Scholar
  68. 68.
    Parsons R, Myeroff LL, Liu B et al (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res 55:5548–5550PubMedGoogle Scholar
  69. 69.
    Locker GY, Hamilton S, Harris J et al (2006) ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 24:5313–5327PubMedCrossRefGoogle Scholar
  70. 70.
    McShane LM, Altman DG, Sauerbrei W, Statistics Subcommittee of the NCI-EORTC Working Group on Cancer Diagnostics et al (2005) Reporting recommendations for neoplastic marker prognostic studies. J Clin Oncol 23:9067–9072PubMedCrossRefGoogle Scholar
  71. 71.
    Moren A, Hellman U, Inada Y et al (2003) Differential ubiquitination defines the functional status of the tumor suppressor Smad4. J Biol Chem 278:33571–33582PubMedCrossRefGoogle Scholar
  72. 72.
    Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov 5:596–613PubMedCrossRefGoogle Scholar
  73. 73.
    Mani A, Gelmann EP (2005) The ubiquitin-proteasome pathway and its role in cancer. J Clin Oncol 23:4776–4789PubMedCrossRefGoogle Scholar
  74. 74.
    Boccadoro M, Morgan G, Cavenagh J (2005) Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int 5:18PubMedCrossRefGoogle Scholar
  75. 75.
    Cusack JC (2003) Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev 29:21–31PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Adriana Handra-Luca
    • 1
    Email author
  • Sylviane Olschwang
    • 2
    • 3
  • Jean-François Fléjou
    • 4
    • 5
  1. 1.Service d’Anatomie PathologiqueAPHP Avicenne Université Paris 13/Nord Medecine, EA3406BobignyFrance
  2. 2.Centre de Recherches en Cancérologie de Marseille INSERM UMR891MarseilleFrance
  3. 3.Institut Paoli-Calmettes MarseilleMarseilleFrance
  4. 4.Service d’Anatomie pathologiqueAPHP Saint Antoine Université Paris 6ParisFrance
  5. 5.INSERM UMRS938ParisFrance

Personalised recommendations