Virchows Archiv

, 459:183 | Cite as

Intratumoral lymphocyte density in serous ovarian carcinoma is superior to ERCC1 expression for predicting response to platinum-based therapy

  • Hans Bösmüller
  • Sophie Haitchi-Petnehazy
  • Gerald Webersinke
  • Renate Marschon
  • Franz Roithmeier
  • Wolfgang Stummvoll
  • Tanja Fehm
  • Margit Klier-Richter
  • Irina Bonzheim
  • Annette Staebler
  • Falko Fend
Original Article

Abstract

Intratumoral immune cells and ERCC1 expression are likely to play a role in the response of ovarian carcinoma to chemotherapy, but their impact on therapy outcome is still unclear. Therefore, 41 cases of optimally resected high grade serous ovarian carcinomas were examined retrospectively for stromal and intraepithelial lymphocyte populations and ERCC1 status in relation to response to platinum-based therapy. Based on RECIST criteria, 27 patients were classified as responsive and 14 as therapy resistant, respectively. Using immunohistochemistry for CD3, CD8, CD4, TIA1, MUM1 and FOX P3 on representative tumor sections, we quantitatively evaluated the intratumoral density of lymphocyte subpopulations. In addition, ERCC1 protein and mRNA expression were determined by immunohistochemistry using the Steffensen score and quantitative RT-PCR, respectively. Furthermore, ERCC1 SNP’s C8092A and codon 118 were analysed. Response to chemotherapy was significantly associated with higher numbers of stromal CD3+ (mean 21.33 lymphocytes/HPF versus 8.21 lymphocytes/HPF, p = 0.002) and CD8+ lymphocytes (mean 9.22 lymphocytes/HPF versus 4.57 lymphocytes/HPF, p = 0.013). Counts of intraepithelial CD3+ and CD8+ lymphocytes, stromal and intraepithelial FOXP3+ and TIA1+ cells, CD4+ lymphocytes, and MUM1+ plasma cells did not reach statistical significance. Neither ERCC1 protein expression (p = 0.232) nor SNPs codon 118 and C8092A of the ERCC1 gene (p = 0.269 and p = 0.543) showed an association with therapy response. The same was true for ERCC1 mRNA levels (p = 0.896), probably due to intratumoral lymphocyte contamination. In conclusion, the density of CD3+ and CD8+ T-cells in tumor stroma proved to be a significant predictor for response to platinum-based therapy, whereas examination of ERCC1 failed to identify therapy-responsive patients.

Keywords

Serous ovarian adenocarcinoma ERCC1 immunohistochemistry ERCC1 mRNA expression ERCC1 SNP Intraepithelial lymphocytes Stromal lymphocytes 

Abbreviations

ERCC1

Excision repair cross-complementing rodent repair deficiency complementation group 1

HPF

High power field

IHC

Immunohistochemistry

IL

Intraepithelial lymphocytes

NSCLC

Non-small cell lung cancer

OS

Overall survival

PFS

Progression-free survival

SL

Stromal lymphocytes

SNP

Single nucleotide polymorphism

SOC

Serous ovarian cancer

TBP

TATA box-binding protein

References

  1. 1.
    Jeong SH, Jung JH, Han JH, Kim JH, Choi YW, Lee HW, Kang SY, Hwang YH, Ahn Ms, Choi JH OHYT, Chun M, Kang S, Park KJ, Hwang SC, Sheen SS (2009) Expression of Bcl-2 predicts outcome in locally advanced non-small cell lung cancer patients treated with cisplatin-based concurrent chemoradiotherapy. Lung Cancer 65:377–382PubMedCrossRefGoogle Scholar
  2. 2.
    Olaussen KA, Dunant A, Fouret P, Brambilla E, André F, Haddad V, Taranchon E, Filipits M, Pirker R, Popper HH, Stahel R, Sabatier L, Pignon JP, Tursz T, Le Chevalier T, Soria JC, Bio Investigators IALT (2006) DNA repair by ERCC1 in non-small lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 355:983–991PubMedCrossRefGoogle Scholar
  3. 3.
    Vilmar A, Sorensen JB (2009) Excision repair cross-complementation group 1 (ERCC1) in platinum-based treatmend of non-small cell lung cancer with spezial emphasis on carboplatin: a review of current literature. Lung Cancer 64:131–139PubMedCrossRefGoogle Scholar
  4. 4.
    Darcy KM, Tian C, Reed E (2007) A Gynecologic Oncology Group study of platinum-DNA adducts and excision repair cross-complementation group 1 expression in optimal, stage III epithelial ovarian cancer treated with platinum-taxane chemotherapy. Cancer Res 67:4474–4481PubMedCrossRefGoogle Scholar
  5. 5.
    Kang S, Ju W, Kim JW, Park NH, Song YS, Kim SC, Park SY, Kang SB, Lee HP (2006) Association between excision repair cross-complementation group 1 polymorphism and clinical outcome of platinum-based chemotherapy in patients with epithelial ovarian cancer. Exp Mol Med 38:320–324PubMedGoogle Scholar
  6. 6.
    Krivak TC, Darcy KM, Tian C, Armstrong D, Baysal BE, Gallion H, Ambrosone CB, DeLoia JA, Gynecologic Oncology Group Phase III Trial (2008) Relationship between ERCC1 polymorphisms, disease progression, and survival in the Gynecologic Oncology Group Phase III Trial of intraperitoneal versus intravenous cisplatin and paclitaxel for stage III epithelial ovarian cancer. J Clin Oncol 26:3598–3606CrossRefGoogle Scholar
  7. 7.
    Smith S, Su D, Rigault de la Longrais IA, Schwartz P, Puopolo M, Rutherford TJ, Mor G, Yu H, Katsaros D (2007) ERCC1 genotype and phenotype in epithelial ovarian cancer identify patients likely to benefit from paclitaxel treatment in addition to platinum-based therapy. J Clin Oncol 25:5172–5179PubMedCrossRefGoogle Scholar
  8. 8.
    Steffensen KD, Waldstrom M, Jakobson A (2009) The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer. Int J Gynecol Cancer 19:820–825PubMedCrossRefGoogle Scholar
  9. 9.
    Altaha R, Liang X, Yu JJ, Reed E (2004) Excision repair cross complementing-group. Gene expression and platinum resistance. Int J Mol Med 14:959–970PubMedGoogle Scholar
  10. 10.
    Dabholkar M, Vionnet J, Bostick-Bruton F, Yu JJ, Reed E (1994) Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 94:703–708PubMedCrossRefGoogle Scholar
  11. 11.
    Weberpals J, Garbuio K, O’Brian A, Clark-Knowles K, Doucette S, Antoniuk O, Goss G, Dimitroulakos J (2009) The DNA repair proteins BRCA1 and ERCC1 as predictive markers in sporadic ovarian cancer. Int J Cancer 124:806–815PubMedCrossRefGoogle Scholar
  12. 12.
    Bellmunt J, Paz-Ares L, Cuello M, Cecere FL, Albiol S, Guillem V, Gallardo E, Carles J, Mendez P, de la Cruz JJ, Taron M, Rosell R, Baselga J (2007) Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 18:522–528PubMedCrossRefGoogle Scholar
  13. 13.
    Selvakumaran M, Pisarcik DA, Bao R, Yeung AT, Hamilton TC (2003) Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines. Cancer Res 63:1311–1316PubMedGoogle Scholar
  14. 14.
    Weberpals JI, Clark-Knowles KV, Vanderhyden BC (2008) Sporadic epithelial ovarian cancer Clinical relevance of BRCA1 inhibition in the DNA damage and repair pathway. J Clin Oncol 26:3259–3267PubMedCrossRefGoogle Scholar
  15. 15.
    Steffensen KD, Waldstrom M, Jeppesen U, Brandslund I, Jakobson A (2008) Prediction of response to chemotherapy by ERCC1 immunohistochemistry and ERCC1 polymorphism in ovarian cancer. Int J Gynecol Cancer 18:702–710PubMedCrossRefGoogle Scholar
  16. 16.
    Yu JJ, Lee KB, Mu C, Li Q, Abernathy TV, Bostick-Bruton F, Reed E (2000) Comparison of two ovarian carcinoma cell lines (A2780/CP70 an MCAS) that are equally resistant to platinum, but differ at codon 118 of the ERCC1 gene. Int J Oncol 16:555–560PubMedGoogle Scholar
  17. 17.
    Adams SF, Levine DA, Cadungog MG, Hammond R, Facciabene A, Olvera N, Rubin SC, Boyd J, Gimotty PA, Coukos G (2009) Intraepithelial T cells and tumor proliferation: impact on the benefit from surgical cytoreduction in advanced serous ovarian cancer. Cancer 115:2891–2902PubMedCrossRefGoogle Scholar
  18. 18.
    Clarke B, Tinker AV, Lee CH, Subramanian S, van de Rijn M, Turbin D, Kalloger S, Han G, Ceballos K, Cadungog MG, Huntsman DG, Coukos G, Gilks CB (2009) Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod Pathol 22:393–402PubMedCrossRefGoogle Scholar
  19. 19.
    Kondratiev S, Sabo E, Yakirevich E, Lavie O, Resnick MB (2004) Intratumoral CD8+ T lymphocytes as a prognostic factor of survival in endometrial carcinoma. Clin Cancer Res 10:4450–4456PubMedCrossRefGoogle Scholar
  20. 20.
    Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, Jungbluth AA, Frosina D, Gnjatic S, Ambrosone C, Kepner J, Odunsi T, Ritter G, Lele S, Chen YT, Ohtani H, Old LJ, Odunsi K (2005) Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 102:18538–18543PubMedCrossRefGoogle Scholar
  21. 21.
    Tel-A H, Alla AE, Laban MA, Fahmy RM (2004) Immunophenotyping of tumor-infiltrating mononuclear cells in ovarian carcinoma. Pathol Oncol Res 10:80–84CrossRefGoogle Scholar
  22. 22.
    Thompson MS, Mok SC (2009) Immunopathogenesis of ovarian cancer. Minerva Med 100:357–370PubMedGoogle Scholar
  23. 23.
    Webb JR, Wick DA, Nielsen JS, Tran E, Milne K, McMurtrie E, Nelson BH (2010) Profound elevation of CD8+ T cells expressing the intraepithelial lymphocyte marker CD103 (alphaE/beta7 Integrin) in high-grade serous ovarian cancer. Gynecol Oncol 118:228–236PubMedCrossRefGoogle Scholar
  24. 24.
    Yang T, Wall EM, Milne K, Theiss P, Watson P, Nelson BH (2007) CD8+ T cells induce complete regression of advanced ovarian cancers by an interleukin (IL)-2/IL-15 dependent mechanism. Clin Cancer Res 13:7172–7180PubMedCrossRefGoogle Scholar
  25. 25.
    Raspollini MR, Castiglione F, Rossi Degl'innocenti D, Amunni G, Villanucci A, Garbini F, Baroni G, Taddei GL (2005) Tumour-infiltrating gamma/delta T-lymphocytes are correlated with a brief disease-free interval in advanced ovarian serous carcinoma. Ann Oncol 16:590–596PubMedCrossRefGoogle Scholar
  26. 26.
    Stumpf M, Hasenburg A, Riener MO, Jütting U, Wang C, Shen Y, Orlowska-Volk M, Fisch P, Wang Z, Gitsch G, Werner M, Lassmann S (2009) Intraepithelial CD8-positive T lymphocytes predict survival for patients with serous stage III ovarian carcinomas: relevance of clonal selection of T lymphocytes. Br J Cancer 101:1513–1521PubMedCrossRefGoogle Scholar
  27. 27.
    Specht K, Kremer M, Müller U, Dirnhofer S, Rosemann M, Höfler H, Quintanilla-Martinez L, Fend F (2002) Identification of cyclin D1 mRNA overexpression in B-cell neoplasias by real-time reverse transcription-PCR of microdissected paraffin sections. Clin Cancer Res 8:2902–2911PubMedGoogle Scholar
  28. 28.
    Scheil-Bertram S, Tylus-Schaaf P, du Bois A, Harter P, Oppitz M, Ewald-Riegler N, Fisseler-Eckhoff A (2010) Excision repair cross-complementation group 1 protein overexpression as a predictor of poor survival for high-grade serous ovarian adenocarcinoma. Gynecol Oncol 119:325–331PubMedCrossRefGoogle Scholar
  29. 29.
    Krivak TC, Darcy KM, Tian C, Bookman M, Gallion H, Ambrosone CB, Deloia JA (2011) Single nucleotide polypmorphisms in ERCC1 are associated with disease progression, and survival in patients with advanced stage ovarian and primary peritoneal carcinoma; A Gynecologic Oncology Group Study. Gynecol Oncol 122:121–126PubMedCrossRefGoogle Scholar
  30. 30.
    Bhagwat NR, Roginskaya VY, Acquafondata MB, Dhir R, Wood RD, Niedernhofer LJ (2009) Immunodetection of DNA repair endonuclease ERCC1-XPF in human tissue. Cancer Res 69:6831–6838PubMedCrossRefGoogle Scholar
  31. 31.
    Specht K, Haralambieva E, Bink K, Kremer M, Mandl-Weber S, Koch I, Tomer R, Hofler H, Schuuring E, Kluin PM, Fend F, Quintanilla-Martinez L (2004) Different mechanisms of cyclin D1 overexpression in multiple myeloma revealed by fluorescence in situ hybridization and quantitative analysis of mRNA levels. Blood 104:1120–1126PubMedCrossRefGoogle Scholar
  32. 32.
    Martinet L, Poupot R, Mirshahi P, Rafii A, Fournié JJ, Mirshahi M, Poupot M (2010) Hospicells derived from ovarian cancers stroma inhibit T-cell immune responses. Int J Cancer 126:2143–2152PubMedGoogle Scholar
  33. 33.
    Tomsová M, Melichar B, Sedláková I, Steiner I (2008) Prognostic significance of CD3+ tumor-infiltrating lymphocytes in ovarian carcinoma. Gynecol Oncol 108:415–420PubMedCrossRefGoogle Scholar
  34. 34.
    Milne K, Köbel M, Kalloger SE, Barnes RO, Gao D, Gilks CB, Watson PH, Nelson BH (2009) Systematic analysis of immune infiltrates in high-grade serous ovarian cancer reveals CD20, FoxP3 and TIA-1 as positive prognostic factors. PLoS One 4:e6412PubMedCrossRefGoogle Scholar
  35. 35.
    Al-Attar A, Shehata M, Durrant L, Moseley P, Deen S, Chan S (2010) T cell density and location can influence the prognosis of ovarian cancer. Pathol Oncol Res 16:361–370PubMedCrossRefGoogle Scholar
  36. 36.
    Barnett JC, Bean SM, Whitaker RS, Kondoh E, Baba T, Fujii S, Marks JR, Dressman HK, Murphy SK, Berchuck A (2010) Ovarian cancer tumor infiltrating T-regulatory (Treg) cells are associated with a metastatic phenotype. Gynecol Oncol 116:556–562PubMedCrossRefGoogle Scholar
  37. 37.
    Wolf D, Wolf AM, Rumpold H, Fiegl H, Zeimet AG, Muller-Holzner E, Deibl M, Gastl G, Gunsilius E, Marth C (2005) The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11:8326–8331PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Hans Bösmüller
    • 1
    • 5
  • Sophie Haitchi-Petnehazy
    • 1
  • Gerald Webersinke
    • 2
  • Renate Marschon
    • 2
  • Franz Roithmeier
    • 3
  • Wolfgang Stummvoll
    • 3
  • Tanja Fehm
    • 4
  • Margit Klier-Richter
    • 5
  • Irina Bonzheim
    • 5
  • Annette Staebler
    • 5
  • Falko Fend
    • 5
  1. 1.Department of PathologyKrankenhaus Barmherzige Schwestern LinzLinzAustria
  2. 2.Laboratory of Molecular BiologyKrankenhaus Barmherzige Schwestern LinzLinzAustria
  3. 3.Department of GynecologyKrankenhaus Barmherzige Schwestern LinzLinzAustria
  4. 4.Department of GynecologyUniversity of TübingenTübingenGermany
  5. 5.Department of PathologyUniversity of TübingenTübingenGermany

Personalised recommendations