Virchows Archiv

, 458:679 | Cite as

Claudins and tricellulin in fibrolamellar hepatocellular carcinoma

  • Attila Patonai
  • Boglárka Erdélyi-Belle
  • Anna Korompay
  • Áron Somorácz
  • Beate K. Straub
  • Peter Schirmacher
  • Ilona Kovalszky
  • Gábor Lotz
  • András Kiss
  • Zsuzsa Schaff
Original Article


Fibrolamellar hepatocellular carcinoma is a subtype of hepatocellular carcinoma occurring in non-cirrhotic liver at a younger age. The tumor expresses both hepatocellular and cholangiocellular markers. Previously, our group described overexpression of tight junction protein claudin 4 in cholangiocellular carcinoma in contrast to hepatocellular carcinoma. In the present study, tight junction protein expressions were studied to possibly clarify bipotential lineage of fibrolamellar hepatocellular carcinoma. Eleven fibrolamellar hepatocellular carcinomas were compared with seven “conventional” hepatocellular carcinomas, seven cholangiocellular carcinomas, and five normal liver samples. By immunohistochemistry, all fibrolamellar hepatocellular carcinomas were positive for HepPar1 and cytokeratins 7, 8, and 18, but negative for cytokeratin 19. Glypican-3 gave weak staining in two cases. Expression of claudin 1 was lower, while that of claudin 2 was higher in fibrolamellar hepatocellular carcinomas than in other tumors. Claudins 3, 4, and 7 were not detectable in fibrolamellar hepatocellular carcinomas as in the majority of “conventional” hepatocellular carcinomas, contrary to high expression observed in cholangiocellular carcinomas. Focal or diffuse claudin 5 expression was detected in nine of 11 fibrolamellar hepatocellular carcinomas contrary to other tumors. Tricellulin was significantly downregulated in all tumors compared with normal liver. Our findings showed claudins to exhibit specific expression patterns in fibrolamellar hepatocellular carcinomas not observed in other primary liver tumors, with unique claudin 5 expression and pattern features similar to common hepatocellular carcinoma, but different from cholangiocellular carcinoma. This is the first report describing the loss of tricellulin expression in human hepatic tumors.


Fibrolamellar hepatocellular carcinoma Tight junction proteins Claudins Hepatocellular carcinoma Cholangiocellular carcinoma Tricellulin 



This work was supported by grants ETT-089/2009 by the Hungarian Ministry of Health and OTKA T 75468 by the Hungarian National Scientific Research Fund.

Conflict of interest

The authors have no financial relationship with the organizations that sponsored the research. The authors declare that they have no conflict of interest.


  1. 1.
    Abdul-Al HM, Wang G, Makhlouf HR, Goodman ZD (2010) Fibrolamellar hepatocellular carcinoma: an immunohistochemical comparison with conventional hepatocellular carcinoma. Int J Surg Pathol 18:313–318PubMedGoogle Scholar
  2. 2.
    Ishak KG, Goodman ZD, Stocker JT (2001) Tumors of the Liver and Intrahepatic Bile Ducts. Atlas of Tumor Pathology, Third Series, Fascicle 31. Armed Forces Institute of Pathology, Washington, DCGoogle Scholar
  3. 3.
    Kannangai R, Vivekanandan P, Martinez-Murillo F, Choti M, Torbenson M (2007) Fibrolamellar carcinomas show overexpression of genes in the RAS, MAPK, PIK3, and xenobiotic degradation pathways. Hum Pathol 38:639–644PubMedCrossRefGoogle Scholar
  4. 4.
    Liu S, Chan KW, Wang B, Qiao L (2009) Fibrolamellar hepatocellular carcinoma. Am J Gastroenterol 104:2617–2624PubMedCrossRefGoogle Scholar
  5. 5.
    Torbenson M (2007) Review of the clinicopathologic features of fibrolamellar carcinoma. Adv Anat Pathol 14:217–223PubMedCrossRefGoogle Scholar
  6. 6.
    Ward SC, Huang J, Tickoo SK, Thung SN, Ladanyi M, Klimstra DS (2010) Fibrolamellar carcinoma of the liver exhibits immunohistochemical evidence of both hepatocyte and bile duct differentiation. Mod Pathol 23:1180–1190PubMedCrossRefGoogle Scholar
  7. 7.
    Craig JR, Peters RL, Edmondson HA, Omata M (1980) Fibrolamellar carcinoma of the liver: a tumor of adolescents and young adults with distinctive clinico-pathologic features. Cancer 46:372–379PubMedCrossRefGoogle Scholar
  8. 8.
    El-Serag HB, Davila JA (2004) Is fibrolamellar carcinoma different from hepatocellular carcinoma? A US population-based study. Hepatology 39:798–803PubMedCrossRefGoogle Scholar
  9. 9.
    Arista-Nasr J, Gutierrez-Villalobos L, Nuncio J, Maldonaldo H, Bornstein-Quevedo L (2002) Fibrolamellar hepatocellular carcinoma in Mexican patients. Pathol Oncol Res 8:133–137PubMedCrossRefGoogle Scholar
  10. 10.
    Górnicka B, Ziarkiewicz-Wróblewska B, Wróblewski T, Wilczynski GM, Koperski L, Krawczyk M, Wasiutynski A (2005) Carcinoma, a fibrolamellar variant—immunohistochemical analysis of 4 cases. Hepatogastroenterology 52:519–523PubMedGoogle Scholar
  11. 11.
    Chang YC, Dai YC, Chow NH (2003) Fibrolamellar hepatocellular carcinoma with a recurrence of classic hepatocellular carcinoma: a case report and review of Oriental cases. Hepatogastroenterology 50:1637–1640PubMedGoogle Scholar
  12. 12.
    Davison FD, Fagan EA, Portmann B, Williams R (1990) HBV-DNA sequences in tumor and nontumor tissue in a patient with the fibrolamellar variant of hepatocellular carcinoma. Hepatology 12:676–679PubMedCrossRefGoogle Scholar
  13. 13.
    Lapis K, Zs S, Kopper L, Karácsonyi S, Ormos J (1990) Fibrolamellar carcinomas of the liver. Zentralbl Allg Pathol Pathol Anat 136:135–149Google Scholar
  14. 14.
    Malouf G, Falissard B, Azoulay D, Callea F, Ferrell LD, Goodman ZD, Hayashi Y, Hsu HC, Hubscher SG, Kojiro M, Ng IO, Paterson AC, Reynes M, Zafrani ES, Emile JF (2009) Is histological diagnosis of primary liver carcinomas with fibrous stroma reproducible among experts? J Clin Pathol 62:519–524PubMedCrossRefGoogle Scholar
  15. 15.
    Lee J-S, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416PubMedCrossRefGoogle Scholar
  16. 16.
    Kakar S, Chen X, Ho C, Burgart LJ, Sahai V, Dachrut S, Yabes A, Jain D, Ferrell LD (2009) Chromosomal changes in fibrolamellar hepatocellular carcinoma detected by array comparative genomic hybridization. Hum Pathol 22:134–141Google Scholar
  17. 17.
    International Consensus Group for Hepatocellular Neoplasia (2009) Pathologic diagnosis of early hepatocellular carcinoma: a report of the International Consensus Group for Hepatocellular Neoplasia. Hepatology 49:658–664CrossRefGoogle Scholar
  18. 18.
    Libbrecht L, Severi T, Cassiman D, Vander Borght S, Pirenne J, Nevens F, Verslype C, van Pelt J, Roskams T (2006) Glypican-3 expression distinguishes small hepatocellular carcinomas from cirrhosis, dysplastic nodules, and focal nodular hyperplasia-like nodules. Am J Surg Pathol 30:1405–1411PubMedCrossRefGoogle Scholar
  19. 19.
    Cs L, Szabó E, Holczbauer Á, Batmunkh E, Szíjártó A, Kupcsulik P, Kovalszky I, Paku S, Illyés G, Kiss A, Schaff Z (2006) Claudin-4 differentiates biliary tract cancers from hepatocellular carcinomas. Mod Pathol 19:460–469CrossRefGoogle Scholar
  20. 20.
    Zs N, Szász AM, Tátrai P, Németh J, Gyorffy H, Somorácz A, Szíjártó A, Kupcsulik P, Kiss A, Schaff Z (2009) Claudin-1, -2, -3, -4, -7, -8, and -10 protein expression in biliary tract cancers. J Histochem Cytochem 57:113–121Google Scholar
  21. 21.
    Nishino R, Honda M, Yamashita T, Takatori H, Minato H, Zen Y, Sasaki M, Takamura H, Horimoto K, Ohta T, Nakanuma Y, Kaneko S (2008) Identification of novel candidate tumour marker genes for intrahepatic cholangiocarcinoma. J Hepatol 49:207–216PubMedCrossRefGoogle Scholar
  22. 22.
    Balda MS, Matter K (2008) Tight junctions and the regulation of gene expression. Biochim Biophys Acta 1788:761–767PubMedGoogle Scholar
  23. 23.
    Lal-Nag M, Morin PJ (2009) The claudins. Genome Biol 10:235PubMedCrossRefGoogle Scholar
  24. 24.
    Saeki R, Kondoh M, Kakutani H (2009) A novel tumor-targeted therapy using a claudin-4-targeting molecule. Mol Pharmacol 76:918–926PubMedCrossRefGoogle Scholar
  25. 25.
    Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S (2008) Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27:6930–6938PubMedCrossRefGoogle Scholar
  26. 26.
    Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805PubMedCrossRefGoogle Scholar
  27. 27.
    Meertens L, Bertaux C, Cukierman L, Cormier E, Lavillette D, Cosset FL, Dragic T (2008) The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 82:3555–3560PubMedCrossRefGoogle Scholar
  28. 28.
    Higashi Y, Suzuki S, Sakaguchi T, Nakamura T, Baba S, Reinecker HC, Nakamura S, Konno H (2007) Loss of claudin-1 expression correlates with malignancy of hepatocellular carcinoma. J Surg Res 139:68–76PubMedCrossRefGoogle Scholar
  29. 29.
    Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181:683–695PubMedCrossRefGoogle Scholar
  30. 30.
    Steed E, Balda MS, Matter K (2010) Dynamics and functions of tight junctions. Trends Cell Biol 20:142–149PubMedCrossRefGoogle Scholar
  31. 31.
    Förster C (2008) Tight junctions and the modulation of barrier function in disease. Histochem Cell Biol 130:55–70PubMedCrossRefGoogle Scholar
  32. 32.
    Martin TA, Jiang WG (2009) Loss of tight junction barrier function and its role in cancer metastasis. Biochim Biophys Acta 1788:872–891PubMedCrossRefGoogle Scholar
  33. 33.
    Ouban A, Ahmed AA (2010) Claudins in human cancer: a review. Histol Histopathol 25:83–90PubMedGoogle Scholar
  34. 34.
    Sawada N, Murata M, Kikuchi K, Osanai M, Tobioka H, Kojima T, Chiba H (2003) Tight junctions and human diseases. Med Electron Microsc 36:147–156PubMedCrossRefGoogle Scholar
  35. 35.
    Yoon CH, Kim MJ, Park MJ, Park IC, Hwang SG, An S, Choi YH, Yoon G, Lee SJ (2010) Claudin-1 acts through c-Abl-protein kinase Cdelta (PKCdelta) signaling and has a causal role in the acquisition of invasive capacity in human liver cells. J Biol Chem 285:226–233PubMedCrossRefGoogle Scholar
  36. 36.
    Kojima T, Murata M, Yamamoto T, Lan M, Imamura M, Son S, Takano K, Yamaguchi H, Ito T, Tanaka S, Chiba H, Hirata K, Sawada N (2009) Tight junction proteins and signal transduction pathways in hepatocytes. Histol Histopathol 24:1463–1472PubMedGoogle Scholar
  37. 37.
    Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and Subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas and gut. Gastroenterology 120:411–422PubMedCrossRefGoogle Scholar
  38. 38.
    Ikari A, Atomi K, Takiguchi A, Yamazaki Y, Miwa M, Sugatani J (2009) Epidermal growth factor increases claudin-4 expression mediated by Sp1 elevation in MDCK cells. Biochem Biophys Res Commun 384:306–310PubMedCrossRefGoogle Scholar
  39. 39.
    Bello IO, Vilen S-T, Niinimaa A, Kantola S, Soini Y, Salo T (2008) Expression of claudins 1, 4, 5, and 7 and occludin, and relationship with prognosis in squamous cell carcinoma of the tongue. Hum Pathol 39:1212–1220PubMedCrossRefGoogle Scholar
  40. 40.
    Dos Reis PP, Bharadwaj RR, Machado J, Macmillan C, Pintilie M, Sukhai MA, Perez-Ordonez B, Gullane P, Irish J, Kamel-Reid S (2008) Claudin 1 overexpression increases invasion and is associated with aggressive histological features in oral squamous cell carcinoma. Cancer 113:3169–3180PubMedCrossRefGoogle Scholar
  41. 41.
    Paschoud S, Bongiovanni M, Pache J-C, Citi S (2007) Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol 20:947–954PubMedCrossRefGoogle Scholar
  42. 42.
    Sobel G, Cs P, Szabó I, Kiss A, Kádár A, Schaff Z (2005) Increased expression of claudins in cervical squamous intraepithelial neoplasia and invasive carcinoma. Hum Pathol 36:162–169PubMedCrossRefGoogle Scholar
  43. 43.
    Tőkés AM, Kulka J, Paku S, Szik A, Páska C, Novák PK, Szilák L, Kiss A, Bögi K, Schaff Z (2005) Claudin −1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study. Breast Cancer Res 7:R296–R305PubMedCrossRefGoogle Scholar
  44. 44.
    Szabó I, Kiss A, Zs S, Sobel G (2009) Claudins as diagnostic and prognostic markers in gynecological cancer. Histol Histopathol 24:1607–1615PubMedGoogle Scholar
  45. 45.
    Resnick MB, Konkin T, Routhier J, Sabo E, Pricolo VE (2005) Claudin-1 is a strong prognostic indicator in stage II colonic cancer: a tissue microarray study. Mod Pathol 18:511–518PubMedCrossRefGoogle Scholar
  46. 46.
    Soini Y (2004) Claudins 2, 3, 4, and 5 in Paget’s disease and breast carcinoma. Hum Pathol 35:1531–1536PubMedCrossRefGoogle Scholar
  47. 47.
    Soini Y (2005) Expression of claudins 1, 2, 3, 4, 5 and 7 in various types of tumours. Histopathology 46:551–560PubMedCrossRefGoogle Scholar
  48. 48.
    Van Itallie CM, Holmes J, Bridges A, Anderson JM (2009) Claudin-2-dependent changes in noncharged solute flux are mediated by the extracellular domains and require attachment to the PDZ-scaffold. Ann NY Acad Sci 1165:82–87PubMedCrossRefGoogle Scholar
  49. 49.
    Sobel G, Németh J, Kiss A, Lotz G, Szabó I, Udvarhelyi N, Schaff Z, Páska C (2006) Claudin 1 differentiates endometrioid and serous papillary endometrial adenocarcinoma. Gynecol Oncol 103:591–598PubMedCrossRefGoogle Scholar
  50. 50.
    Amasheh S, Schmidt T, Mahn M, Florian P, Mankertz J, Tavalali S, Gitter AH, Schulzke JD, Fromm M (2005) Expression of claudin-5 contributes to barrier properties in tight junctions of epithelial cells. Cell Tissue Res 321:89–96PubMedCrossRefGoogle Scholar
  51. 51.
    Kojima S, Rahner C, Peng S, Rizzolo LJ (2002) Claudin 5 is transiently expressed during the development of the retinal pigment epithelium. J Membr Biol 186:81–88PubMedCrossRefGoogle Scholar
  52. 52.
    Jakab C, Rusvai M, Gálfi P, Mándoki M, Demeter Z, Szabó Z, Kulka J (2009) Expression of claudin-5 in hepatoid gland biopsies. Vet Dermatol 21:276–281CrossRefGoogle Scholar
  53. 53.
    Comper F, Antonello D, Beghelli S, Gobbo S, Montagna L, Pederzoli P, Chilosi M, Scarpa A (2009) Expression pattern of claudins 5 and 7 distinguishes solid-pseudopapillary from pancreatoblastoma, acinar cell and endocrine tumors of the pancreas. Am J Surg Pathol 33:768–774PubMedCrossRefGoogle Scholar
  54. 54.
    Burek M, Arias-Loza PA, Roewer N, Förster CY (2010) Claudin-5 as a novel estrogen target in vascular endothelium. Arterioscler Thromb Vasc Biol 30:298–304PubMedCrossRefGoogle Scholar
  55. 55.
    Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945PubMedCrossRefGoogle Scholar
  56. 56.
    Westphal JK, Dörfel MJ, Krug SM, Cording JD, Piontek J, Blasig IE, Tauber R, Fromm M, Huber O (2010) Tricellulin forms homomeric and heteromeric tight junctional complexes. Cell Mol Life Sci 67:2057–2068PubMedCrossRefGoogle Scholar
  57. 57.
    Krug SM, Amasheh S, Richter JF, Milatz S, Günzel D, Westphal JK, Huber O, Schulzke JD, Fromm M (2009) Tricellulin forms a barrier to macromolecules in tricellular tight junctions without affecting ion permeability. Mol Biol 20:3713–3724Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Attila Patonai
    • 1
  • Boglárka Erdélyi-Belle
    • 1
  • Anna Korompay
    • 1
  • Áron Somorácz
    • 1
  • Beate K. Straub
    • 2
  • Peter Schirmacher
    • 2
  • Ilona Kovalszky
    • 3
  • Gábor Lotz
    • 1
  • András Kiss
    • 1
  • Zsuzsa Schaff
    • 1
  1. 1.2nd Department of PathologySemmelweis UniversityBudapestHungary
  2. 2.Institute of PathologyUniversity Clinic Heidelberg, Ruprecht-Karls UniversityHeidelbergGermany
  3. 3.First Institute of Pathology and Experimental Cancer ResearchSemmelweis UniversityBudapestHungary

Personalised recommendations