Advertisement

Virchows Archiv

, Volume 458, Issue 6, pp 697–708 | Cite as

The homeobox gene HLXB9 is upregulated in a morphological subset of poorly differentiated hepatocellular carcinoma

  • Ludwig WilkensEmail author
  • Rolf Jaggi
  • Caroline Hammer
  • Daniel Inderbitzin
  • Olivier Giger
  • Nils von Neuhoff
Original Article

Abstract

The prognostic outcome for hepatocellular carcinoma (HCC) remains poor. Disease progression is accompanied by dedifferentiation of the carcinoma, a process that is not well understood. The aim of this study was to get more insight into the molecular characteristics of dedifferentiated carcinomas using high throughput techniques. Microarray-based global gene expression analysis was performed on five poorly differentiated HCC cell lines compared with non-neoplastic hepatic controls and a set of three cholangiolar carcinoma (CC) cell lines. The gene with the highest upregulation was HLXB9. HLXB9 is a gene of the homeobox genfamily important for the development of the pancreas. RT-PCR confirmed the upregulation of HLXB9 in surgical specimens of carcinoma tissue, suggesting its biological significance. Interestingly, HLXB9 upregulation was primary observed in poorly differentiated HCC with a pseudoglandular pattern compared with a solid pattern HCC or in moderate or well-differentiated HCC. Additional the expression of translated HLXB9, the protein HB9 (NCBI: NP_001158727), was analyzed by western blotting. Expression of HB9 was only detected in the cytoplasm but not in the nuclei of the HCC cells. For validation CC were also investigated. Again, we found an upregulation of HLXB9 in CC cells accompanied by an expression of HB9 in the cytoplasms of these tumor cells, respectively. In conclusion, homeobox HLXB9 is upregulated in poorly differentiated HCC with a pseudoglandular pattern. The translated HB9 protein is found in the cytoplasm of these HCC and CC. We therefore assume HLXB9 as a possible link in the understanding of the development of HCC and CC, respectively.

Keywords

Hepatocellular carcinoma Cholangiocellular carcinoma HLXB9 Histological differentiation 

Notes

Conflict of interest

The authors declare that they have no conflict of interests.

Funding

This work was supported by the Schweizerischer Nationalfonds (SNF, grant 31003A-118065).

References

  1. 1.
    Schirmacher P, Dienes HP (1999) Hepatocellular carcinoma. In: Kurzrock R, Talpaz M (eds) Molecular biology in cancer medicine. Dunitz, London, pp 355–366Google Scholar
  2. 2.
    El-Serag HB (2002) Hepatocellular carcinoma: an epidemiologic view. J Clin Gastroenterol 35(5 Suppl 2):72–78CrossRefGoogle Scholar
  3. 3.
    Wu CG, Salvay DM, Forgues M, Valerie K, Farnsworth J, Markin RS, Wang XW (2001) Distinctive gene expression profiles associated with hepatitis B virus × protein. Oncogene 20:3674–3682PubMedCrossRefGoogle Scholar
  4. 4.
    Smith MW, Yue ZN, Geiss GK, Sadovnikova NY, Carter VS, Boix L, Lazaro CA, Rosenberg GB, Bumgarner RE, Fausto N, Bruix J, Katze MG (2003) Identification of novel tumor markers in hepatitis C virus-associated hepatocellular carcinoma. Cancer Res 63:859–864PubMedGoogle Scholar
  5. 5.
    Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y, Tsunoda T, Furukawa Y, Nakamura Y (2001) Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 61:2129–2137PubMedGoogle Scholar
  6. 6.
    Iizuka N, Oka M, Yamada-Okabe H, Hamada K, Nakayama H, Mori N, Tamesa T, Okada T, Takemoto N, Matoba K, Takashima M, Sakamoto K, Tangoku A, Miyamoto T, Uchimura S, Hamamoto Y (2004) Molecular signature in three types of hepatocellular carcinoma with different viral origin by oligonucleotide microarray. Int J Oncol 24:565–574PubMedGoogle Scholar
  7. 7.
    Neo SY, Leow CK, Vega VB, Long PM, Islam AF, Lai PB, Liu ET, Ren EC (2004) Identification of discriminators of hepatoma by gene expression profiling using a minimal dataset approach. Hepatology 39:944–953PubMedCrossRefGoogle Scholar
  8. 8.
    Thorgeirsson SS, Grisham JW (2002) Molecular pathogenesis of human hepatocellular carcinoma. Nat Genet 31:339–346PubMedCrossRefGoogle Scholar
  9. 9.
    Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 7:462–503PubMedCrossRefGoogle Scholar
  10. 10.
    Ishak KG, Goodman ZD, Stocker JT (2001) Tumors of the liver and intrahepatic bile ducts, vol. 31, 3rd edn. Armed Forces Institute of Pathology, WashingtonGoogle Scholar
  11. 11.
    Kenmochi K, Sugihara S, Kojiro M (1987) Relationship of histologic grade of hepatocellular carcinoma (HCC) to tumor size, and demonstration of tumor cells of multiple different grades in single small HCC. Liver 7:18–26PubMedGoogle Scholar
  12. 12.
    Sugihara S, Nakashima O, Kojiro M, Majima Y, Tanaka M, Tanikawa K (1992) The morphologic transition in hepatocellular carcinoma. A comparison of the individual histologic features disclosed by ultrasound-guided fine-needle biopsy with those of autopsy. Cancer 70:1488–1492PubMedCrossRefGoogle Scholar
  13. 13.
    Wilkens L, Flemming P, Gebel M, Bleck J, Terkamp C, Kreipe H, Schlegelberger B (2004) Induction of aneuploidy by increasing chromosomal instability during dedifferentiation of hepatocellular carcinoma. Proc Natl Acad Sci USA 101:1309–1314PubMedCrossRefGoogle Scholar
  14. 14.
    Skawran B, Steinemann D, Weigmann A, Becker T, Flik J, Kreipe H, Schlegelberger B, Wilkens L (2008) Gene expression profiling in hepatocelluar carcinoma: coordinated up-regulation of genes localised in amplified chromosome regions. Mod Pathol 21:505–516PubMedCrossRefGoogle Scholar
  15. 15.
    Nzeako UC, Goodman ZD, Ishak KG (1995) Comparison of tumor pathology with duration of survival of North American patients with hepatocellular carcinoma. Cancer 76:579–588PubMedCrossRefGoogle Scholar
  16. 16.
    Lauwers GY, Terris B, Balis UJ, Batts KP, Regimbeau JM, Chang Y, Graeme-Cook F, Yamabe H, Ikai I, Cleary KR, Fujita S, Flejou JF, Zukerberg LR, Nagorney DM, Belghiti J, Yamaoka Y, Vauthey JN (2002) Prognostic histologic indicators of curatively resected hepatocellular carcinomas: a multi-institutional analysis of 425 patients with definition of a histologic prognostic index. Am J Surg Pathol 26:25–34PubMedCrossRefGoogle Scholar
  17. 17.
    Alexandre E, Viollon-Abadie C, David P, Gandillet A, Coassolo P, Heyd B, Mantion G, Wolf P, Bachellier P, Jaeck D, Richert L (2002) Cryopreservation of adult human hepatocytes obtained from resected liver biopsies. Cryobiology 44:103–113PubMedCrossRefGoogle Scholar
  18. 18.
    Ishak KG, Anthony PP, Sobin LH (1994) WHO: histological typing of tumours of the liver, 2 ednGoogle Scholar
  19. 19.
    Oberli A, Popovici V, Delorenzi M, Baltzer A, Antonov J, Matthey S, Aebi S, Altermatt HJ, Jaggi R (2008) Expression profiling with RNA from formalin-fixed, paraffin-embedded material. BMC Med Genomics 1:9PubMedCrossRefGoogle Scholar
  20. 20.
    Harrison KA, Thaler J, Pfaff SL, Gu H, Kehrl JH (1999) Pancreas dorsal lobe agenesis and abnormal islets of Langerhans in Hlxb9-deficient mice. Nat Genet 23:71–75PubMedGoogle Scholar
  21. 21.
    Lee JS, Heo J, Libbrecht L, Chu IS, Kaposi-Novak P, Calvisi DF, Mikaelyan A, Roberts LR, Demetris AJ, Sun Z, Nevens F, Roskams T, Thorgeirsson SS (2006) A novel prognostic subtype of human hepatocellular carcinoma derived from hepatic progenitor cells. Nat Med 12:410–416PubMedCrossRefGoogle Scholar
  22. 22.
    Ross AJ, Ruiz-Perez V, Wang Y, Hagan DM, Scherer S, Lynch SA, Lindsay S, Custard E, Belloni E, Wilson DI, Wadey R, Goodmann F, Orstavik KH, Monclair T, Robson S, Reardon W, Burn J, Scambler P, Strachan T (1998) A homoebox gene, HLXB9, is the major locus ofr dominantly inherited sacral agenesis. Nat Genet 20:358–361PubMedCrossRefGoogle Scholar
  23. 23.
    Saha MS, Miles RR, Grainger RM (1997) Dorsal-ventral patterning during neural induction in Xenopus: assessment of spinal cord regionalization with xHB9, a marker for the motor neuron region. Dev Biol 187:209–223PubMedCrossRefGoogle Scholar
  24. 24.
    Hagan DM, Ross AJ, Strachan T, Lynch SA, Ruiz-Perez V, Wang YM, Scambler P, Custard E, Reardon W, Hassan S, Nixon P, Papapetrou C, Winter RM, Edwards Y, Morrison K, Barrow M, Cordier-Alex MP, Correia P, Galvin-Parton PA, Gaskill S, Gaskin KJ, Garcia-Minaur S, Gereige R, Hayward R, Homfray T (2000) Mutation analysis and embryonic expression of the HLXB9 Currarino syndrome gene. Am J Hum Genet 66:1504–1515PubMedCrossRefGoogle Scholar
  25. 25.
    Li H, Arber S, Jessell TM, Edlund H (1999) Selective agenesis of the dorsal pancreas in mice lacking homeobox gene Hlxb9. Nat Genet 23:67–70PubMedGoogle Scholar
  26. 26.
    Sherwood RI, Chen TY, Melton DA (2009) Transcriptional dynamics of endodermal organ formation. Dev Dyn 238:29–42PubMedCrossRefGoogle Scholar
  27. 27.
    Currarino G, Coln D, Votteler T (1981) Triad of anorectal, sacral, and pre sacral anomalies. Am J Roentgenol 137:395–398Google Scholar
  28. 28.
    Nagel S, Scherr M, Quentmeier H, Kaufmann M, Zaborski M, Drexler HG, MacLeod RA (2005) HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3. Leukemia 19:841–846PubMedCrossRefGoogle Scholar
  29. 29.
    Ballabio E, Cantarella CD, Federico C, Di MP, Hall G, Harbott J, Hughes J, Saccone S, Tosi S (2009) Ectopic expression of the HLXB9 gene is associated with an altered nuclear position in t(7;12) leukaemias. Leukemia 23:1179–1182PubMedCrossRefGoogle Scholar
  30. 30.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706PubMedCrossRefGoogle Scholar
  31. 31.
    Roskams T, Desmet V, Verslype C (2007) Development, structure and function of the liver. In: Burt A, Portmann B, Ferrell L (eds) MacSween’s pathology of the liver. Churchill Livingstone Elsevier, Philadelphia, pp 1–74Google Scholar
  32. 32.
    Wildenhain S, Ruckert C, Rottgers S, Harbott J, Ludwig WD, Schuster FR, Beldjord K, Binder V, Slany R, Hauer J, Borkhardt A (2010) Expression of cell–cell interacting genes distinguishes HLXB9/TEL from MLL-positive childhood acute myeloid leukemia. Leukemia 24:1657–1660PubMedCrossRefGoogle Scholar
  33. 33.
    Sun JC, Liang XT, Pan K, Wang H, Zhao JJ, Li JJ, Ma HQ, Chen YB, Xia JC (2010) High expression level of EDIL3 in HCC predicts poor prognosis of HCC patients. World J Gastroenterol 16:4611–4615PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ludwig Wilkens
    • 1
    • 2
    Email author
  • Rolf Jaggi
    • 3
  • Caroline Hammer
    • 1
  • Daniel Inderbitzin
    • 4
  • Olivier Giger
    • 1
  • Nils von Neuhoff
    • 5
  1. 1.Institute of PathologyUniversity of BernBernSwitzerland
  2. 2.Institute of PathologyHospitals of the Region HannoverHannoverGermany
  3. 3.Department of Clinical ResearchUniversity of BernBernSwitzerland
  4. 4.Department of Visceral and Transplantation SurgeryInselspital BernBernSwitzerland
  5. 5.Institute of Cell and Molecular PathologyMedical School HannoverHannoverGermany

Personalised recommendations