Virchows Archiv

, Volume 458, Issue 3, pp 313–322

Frequent concomitant inactivation of miR-34a and miR-34b/c by CpG methylation in colorectal, pancreatic, mammary, ovarian, urothelial, and renal cell carcinomas and soft tissue sarcomas

  • Markus Vogt
  • Johanna Munding
  • Martha Grüner
  • Sven-Thorsten Liffers
  • Berlinda Verdoodt
  • Jennifer Hauk
  • Lars Steinstraesser
  • Andrea Tannapfel
  • Heiko Hermeking
Original Article


The microRNA encoding genes miR-34a and miR-34b/c represent direct p53 target genes and possess tumor suppressive properties as they mediate apoptosis, cell cycle arrest, and senescence. We previously reported that the miR-34a gene is subject to epigenetic inactivation by CpG methylation of its promoter region in primary prostate cancer and melanomas, and in 110 different cancer cell lines of diverse origin. Here we analyzed the methylation status of miR-34a and miR-34b/c in additional primary tumors of divergent sites. We found methylation of miR-34a or miR-34b/c in formalin-fixed, paraffin-embedded (FFPE) tumor samples from 178 patients with the following frequencies: colorectal cancer (74% miR-34a, 99% miR-34b/c; n = 114), pancreatic cancer (64%, 100%; n = 11), mammary cancer (60%, 90%; n = 10), ovarian cancer (62%, 69%; n = 13), urothelial cancer (71%, 57%; n = 7), and renal cell cancer (58%, 100%; n = 12). Furthermore, soft tissue sarcomas showed methylation of miR-34 gene promoters in FFPE samples (64%, 45%; n = 11), in explanted, cultured cells (53%, 40%; n = 40), and in frozen tissue samples (75%, 75%, n = 8). In the colorectal cancer samples a statistically significant correlation of miR-34a methylation and the absence of p53 mutation was detected. With the exception of sarcoma cell lines, the inactivation of miR-34a and miR-34b/c was concomitant in most cases. These results show that miR-34 inactivation is a common event in tumor formation, and suggest that CpG methylation of miR-34a and miR-34-b/c may have diagnostic value. The mutual exclusiveness of miR-34a methylation and p53 mutation indicates that miR-34a inactivation may substitute for loss of p53 function in cancer.


CpG methylation p53 miR-34a miR-34b/c miR-34 family Cancer Epigenetic inactivation 

Supplementary material

428_2010_1030_MOESM1_ESM.doc (28 kb)
Table S1(doc 28 kb)
428_2010_1030_MOESM2_ESM.xls (76 kb)
Tables S2–S3(xls 75.5kb)
428_2010_1030_MOESM3_ESM.ppt (22.6 mb)
Figures S1–S2(ppt 22.5 mb)
428_2010_1030_MOESM4_ESM.ppt (7.1 mb)
Figure S3(ppt 7.14 mb)


  1. 1.
    Garzon R, Calin GA, Croce CM (2009) MicroRNAs in Cancer. Annu Rev Med 60:167–179PubMedCrossRefGoogle Scholar
  2. 2.
    Hermeking H (2007) p53 enters the microRNA world. Cancer Cell 12(5):414–418PubMedCrossRefGoogle Scholar
  3. 3.
    Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714PubMedCrossRefGoogle Scholar
  4. 4.
    Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G, Hermeking H (2007) Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle 6(13):1586–1593PubMedCrossRefGoogle Scholar
  5. 5.
    Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26(5):745–752PubMedCrossRefGoogle Scholar
  6. 6.
    Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, Bentwich Z, Oren M (2007) Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell 26(5):731–743PubMedCrossRefGoogle Scholar
  7. 7.
    He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134PubMedCrossRefGoogle Scholar
  8. 8.
    Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ, Qin ZS, Moore BB, Macdougald OA, Cho KR, Fearon ER (2007) p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 17(15):1298–1307PubMedCrossRefGoogle Scholar
  9. 9.
    Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY (2007) MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth. Cancer Res 67(18):8433–8438PubMedCrossRefGoogle Scholar
  10. 10.
    Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17(2):193–199PubMedCrossRefGoogle Scholar
  11. 11.
    Welch C, Chen Y, Stallings RL (2007) MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene 26(34):5017–5022PubMedCrossRefGoogle Scholar
  12. 12.
    Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T (2008) Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 68(11):4123–4132PubMedCrossRefGoogle Scholar
  13. 13.
    Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3(6):415–428PubMedGoogle Scholar
  14. 14.
    Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128(4):683–692PubMedCrossRefGoogle Scholar
  15. 15.
    Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266PubMedCrossRefGoogle Scholar
  16. 16.
    Lodygin D, Tarasov V, Epanchintsev A, Berking C, Knyazeva T, Korner H, Knyazev P, Diebold J, Hermeking H (2008) Inactivation of miR-34a by aberrant CpG methylation in multiple types of cancer. Cell Cycle 7(16):2591–2600PubMedCrossRefGoogle Scholar
  17. 17.
    Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355PubMedCrossRefGoogle Scholar
  18. 18.
    Lujambio A, Calin GA, Villanueva A, Ropero S, Sanchez-Cespedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105(36):13556–13561PubMedCrossRefGoogle Scholar
  19. 19.
    Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93(18):9821–9826PubMedCrossRefGoogle Scholar
  20. 20.
    Wittekind CM, Bootz F, Meyer HJ (2002) TNM—Klassifikation maligner Tumoren. 6 edn. UICC International Union Against Cancer. Springer, BerlinGoogle Scholar
  21. 21.
    Corney DC, Hwang CI, Matoso A, Vogt M, Flesken-Nikitin A, Godwin AK, Kamat AA, Sood AK, Ellenson LH, Hermeking H, Nikitin AY (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin Cancer Res 16(4):1119–1128PubMedCrossRefGoogle Scholar
  22. 22.
    Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X (2009) miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells. Cancer Lett 275(1):44–53PubMedCrossRefGoogle Scholar
  23. 23.
    Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, Comoglio PM, Giordano S (2008) MicroRNAs impair MET-mediated invasive growth. Cancer Res 68(24):10128–10136PubMedCrossRefGoogle Scholar
  24. 24.
    Hagman Z, Larne O, Edsjo A, Bjartell A, Ehrnstrom RA, Ulmert D, Lilja H, Ceder Y (2010) miR-34c is down regulated in prostate cancer and exerts tumor suppressive functions. Int J Cancer 127(12):2768–2776CrossRefGoogle Scholar
  25. 25.
    Gallardo E, Navarro A, Vinolas N, Marrades RM, Diaz T, Gel B, Quera A, Bandres E, Garcia-Foncillas J, Ramirez J, Monzo M (2009) miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer. Carcinogenesis 30(11):1903–1909PubMedCrossRefGoogle Scholar
  26. 26.
    Li Y, Guessous F, Zhang Y, Dipierro C, Kefas B, Johnson E, Marcinkiewicz L, Jiang J, Yang Y, Schmittgen TD, Lopes B, Schiff D, Purow B, Abounader R (2009) MicroRNA-34a inhibits glioblastoma growth by targeting multiple oncogenes. Cancer Res 69(19):7569–7576PubMedCrossRefGoogle Scholar
  27. 27.
    Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y, Nielsen FC, Oren M, Lund AH (2010) p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 17(2):236–245PubMedCrossRefGoogle Scholar
  28. 28.
    Tazawa H, Tsuchiya N, Izumiya M, Nakagama H (2007) Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci U S A 104(39):15472–15477PubMedCrossRefGoogle Scholar
  29. 29.
    Cannell IG, Kong YW, Johnston SJ, Chen ML, Collins HM, Dobbyn HC, Elia A, Kress TR, Dickens M, Clemens MJ, Heery DM, Gaestel M, Eilers M, Willis AE, Bushell M (2010) p38 MAPK/MK2-mediated induction of miR-34c following DNA damage prevents Myc-dependent DNA replication. Proc Natl Acad Sci U S A 107(12):5375–5380PubMedCrossRefGoogle Scholar
  30. 30.
    Iacopetta B (2003) TP53 mutation in colorectal cancer. Hum Mutat 21(3):271–276PubMedCrossRefGoogle Scholar
  31. 31.
    Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T, Gebbia N (2005) The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol 23(30):7518–7528PubMedCrossRefGoogle Scholar
  32. 32.
    Hoff PM (2005) Is there a role for routine p53 testing in colorectal cancer. J Clin Oncol 23(30):7395–7396PubMedCrossRefGoogle Scholar
  33. 33.
    Ji Q, Hao X, Zhang M, Tang W, Yang M, Li L, Xiang D, Desano JT, Bommer GT, Fan D, Fearon ER, Lawrence TS, Xu L (2009) MicroRNA miR-34 inhibits human pancreatic cancer tumor-initiating cells. PLoS ONE 4(8):e6816PubMedCrossRefGoogle Scholar
  34. 34.
    Chim CS, Wong KY, Qi Y, Loong F, Lam WL, Wong LG, Jin DY, Costello JF, Liang R (2010) Epigenetic inactivation of the miR-34a in hematological malignancies. Carcinogenesis 31(4):745–750PubMedCrossRefGoogle Scholar
  35. 35.
    Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG (2010) Development of a lung cancer therapeutic based on the tumor suppressor MicroRNA-34. Cancer Res 70(14):5923–5930PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Markus Vogt
    • 1
  • Johanna Munding
    • 1
  • Martha Grüner
    • 1
  • Sven-Thorsten Liffers
    • 1
  • Berlinda Verdoodt
    • 1
  • Jennifer Hauk
    • 2
  • Lars Steinstraesser
    • 2
  • Andrea Tannapfel
    • 1
  • Heiko Hermeking
    • 1
    • 3
  1. 1.Institute of PathologyRuhr-University-BochumBochumGermany
  2. 2.Department of Plastic and Reconstructive Surgery, Department of Hand Surgery, Soft Tissue Tumour Reference Centre, BG University Hospital BergmannsheilRuhr University BochumBochumGermany
  3. 3.Experimental and Molecular Pathology, Institute of PathologyLudwig-Maximilians-University MunichMunichGermany

Personalised recommendations