Virchows Archiv

, Volume 456, Issue 4, pp 367–375 | Cite as

Acute kidney injury in human leptospirosis: an immunohistochemical study with pathophysiological correlation

  • Eduardo Rocha Araujo
  • Antonio Carlos Seguro
  • Anne Spichler
  • Antonio J. Magaldi
  • Rildo A. Volpini
  • Thales De Brito
Original Article


Tubulointerstitial nephritis is a common clinicopathological finding in leptospirosis. Clinically, nonoliguric acute kidney injury (AKI), hypokalemia, sodium, and magnesium wasting frequently occur in leptospirosis. The exact mechanisms of renal involvement remain largely unclear. Immunohistochemistry to detect expression of the endogenous sodium/hydrogen exchanger isoform 3 (NHE 3), aquaporin 1 and 2, α-Na+K+ATPase, and sodium–potassium–chloride cotransporter in its NKCC2 isoform was performed on kidneys removed during autopsy of human leptospirosis cases and kidneys removed during autopsy of human non-leptospirosis cases with and without evidence of acute tubular necrosis (ATN). A decrease in NHE 3, aquaporin 1, and α-Na+K+ATPase expression occurred in proximal convoluted tubule cells. Expression of aquaporin 1 was preserved along the descending thin limb of the loop of Henle in the outer medulla. α-Na+K+ATpase expression was essentially preserved in the distal tubules, i.e., the thick ascending limb of the loop of Henle, macula densa, and distal convoluted tubule. Aquaporin 2 expression in the collecting tubules was enhanced compared to those of non-leptospirotic kidneys. NKCC2 cotransport isoform was expressed in the thick ascending limb of the loop of Henle and was essentially preserved in leptospirotic kidneys. Primary injury of the proximal convoluted tubules is regarded as the hallmark of the kidney in leptospirosis. Sodium and water transport are particularly affected with increased distal potassium excretion, hypokalemia, and polyuria. Enhanced expression of aquaporin 2 in medullary collecting tubules is probably an attempt to retain water during the nonoliguric phase of renal failure.


Leptospirosis Human Kidney Immunohistochemistry 



Work supported by grants from LIM 06 and 12 (S. Paulo Medical School, University of S. Paulo and “Hospital das Clinicas,” S. Paulo Brazil).

Dr. Mark Knepper and Dr. Carolyn Ecelbarger from the NHI (USA) kindly donated to us the anti-NHE3 and α-Na+K+Atpase antibodies used in this work.

Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Andrade L, Rodrigues AC Jr, Sanches TRC et al (2007) Leptospirosis leads to dysregulation of sodium transporters in the kidney and lung. Am J Physiol Renal Physiol 292:F586–F592CrossRefPubMedGoogle Scholar
  2. 2.
    Faine S, Adler B, Bolin C et al (1999) Leptospira and leptospirosis, 2nd edn. MediSci, MelbourneGoogle Scholar
  3. 3.
    Atzingen MV, Barbosa AS, De Brito T et al (2008) Lsa21, a novel leptospiral protein binding adhesive matrix molecules and present during human infection. BMC Microbiol 8:70. doi: 10.1186/1471-2180-8-70 CrossRefPubMedGoogle Scholar
  4. 4.
    Haake DA, Chao G, Zuerner RL, Barnett JK et al (2000) The leptospiral outer membrane protein LipL32 is a lipoprotein expressed during mammalian infection. Infect Immunol 68:2276–2285CrossRefGoogle Scholar
  5. 5.
    De Brito T, Menezes LF, Lima DMC et al (2006) Immunohistochemical and in situ hybridization studies of the liver and kidney in human leptospirosis. Virchows Arch 448:576–583CrossRefPubMedGoogle Scholar
  6. 6.
    Andrade L, Daher EF, Seguro AC (2008) Leptospiral nephropathy. Semin Nephrol 28:383–394CrossRefPubMedGoogle Scholar
  7. 7.
    Magaldi AJ, Yasuda PH, Kudo LH et al (1992) Renal involvement in leptospirosis: a pathophysiologic study. Nephron 62:332–339CrossRefPubMedGoogle Scholar
  8. 8.
    Spichler A, Ko AI, Fagonde Silva E et al (2007) Reversal of renal tubule transporter downregulation during severe leptospirosis with antimicrobial therapy. Am J Trop Med Hyg 77:1111–1119PubMedGoogle Scholar
  9. 9.
    Olesen ET, de Seigneux S, Wang G et al (2009) Rapid and segmental specific dysregulation of AQP2, S256-pAQP2 and renal sodium transporters in rats with LPS-induced endotoxaemia. Nephrol Dial Transplant 24(8):2338–2349CrossRefPubMedGoogle Scholar
  10. 10.
    Agre P, Bonhivers M, Borgnia MJ (1998) Minireview—the aquaporins, blueprints for cellular plumbing systems. J Biol Chem 273(24):14659–14662CrossRefPubMedGoogle Scholar
  11. 11.
    Maunsbach AB, Marples D, Chin E et al (1997) Aquaporin 1 water channel expression in human kidney. J Am Soc Nephrol 8:1–14PubMedGoogle Scholar
  12. 12.
    Abdulkader RCRM, Silva MV (2008) The kidney in leptospirosis. Pediatr Nephrol 23:2111–2120. doi: 10.1007/s00467-008-0811 -4 CrossRefPubMedGoogle Scholar
  13. 13.
    Davila de Arriaga AJ, Rocha AS, Yasuda PH et al (1982) Morpho-functional patterns of kidney injury in the experimental leptospirosis of the guinea-pig(l.icterohaemorrhagiae). J Pathol 138:145–161CrossRefPubMedGoogle Scholar
  14. 14.
    Russell JM (2000) Sodium-Potassium-Chloride cotransport. Physiol Rev 80:211–276PubMedGoogle Scholar
  15. 15.
    Nielsen S, Frokler J, Marples D et al (2002) Aquaporins in the kidneys: from molecules to medicine. Physiol Rev 82:205–244PubMedGoogle Scholar
  16. 16.
    Bedford JJ, Leader JP, Walker RJ (2003) Aquaporin expression in normal human kidney and in renal disease. J Am Soc Nephrol 14:2581–2587CrossRefPubMedGoogle Scholar
  17. 17.
    Lin Chun-Liang, Wu Mai-Szu, Yang Chih-Wei et al (1999) Leptospirosis associated with hypokalemia and thick ascending limb dysfunction. Nephrol Dial Transplant 14:193–195CrossRefPubMedGoogle Scholar
  18. 18.
    Wu MS, Yang CW, Pan MJ et al (2004) Reduced renal NA+-K+-Cl co-transporter activity and inhibited NKCC2 mRNA expression by Leptospira shermani :from bed-side to bench. Nephrol Dial Transplant 19:2472–2479CrossRefPubMedGoogle Scholar
  19. 19.
    Khositseth S, Sudjaritja N, Tananchai P et al (2008) Renal magnesium wasting and tubular dysfunction in leptospirosis. Nephrol Dial Transplant 23:952–958CrossRefPubMedGoogle Scholar
  20. 20.
    Sanches TR, Santos PM, Seguro AC et al (2009) NKCC2 and AQP2 protein expression is upregulated in the recovering phase of leptospirosis-induced acute kidney injury (AKI). J Am Soc Nephrol 20:362AGoogle Scholar
  21. 21.
    Liamis G, Rizos E, Elisaf MS (2000) Reversible proximal tubular disfunction in a patient with acute febrile illness and normal renal function: an evidence towards leptospirosis. Clin Nephrol 53(4):316PubMedGoogle Scholar
  22. 22.
    Liberopoulos E, Bairaktari E, Elisaf M (2002) Reversible proximal tubular disfunction in a patient with acute febrile illness, marked hyperbilirubinemia and normal renal function: evidence of leptospirosis. Nephron 91:532–533CrossRefPubMedGoogle Scholar
  23. 23.
    Yang C-W, Wu M-S, Pan M-J (2001) Leptospirosis renal disease. Nephrol Dial Transplant 16(suppl 5):73–77PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Eduardo Rocha Araujo
    • 3
    • 1
  • Antonio Carlos Seguro
    • 2
  • Anne Spichler
    • 2
  • Antonio J. Magaldi
    • 2
  • Rildo A. Volpini
    • 2
  • Thales De Brito
    • 3
    • 1
  1. 1.Department of PathologyS. Paulo University Medical SchoolSão PauloBrazil
  2. 2.Renal Disease Basic Research Laboratory-LIM 12-“Hospital das Clinicas”University of S. Paulo Medical SchoolSão PauloBrazil
  3. 3.Instituto de Medicina Tropical de S.PauloSão PauloBrazil

Personalised recommendations