Virchows Archiv

, Volume 456, Issue 2, pp 201–217 | Cite as

Soft tissue sarcomas with complex genomic profiles

  • Louis GuillouEmail author
  • Alain Aurias
Review and Perspective


Soft tissue sarcomas (STS) with complex genomic profiles (50% of all STS) are predominantly composed of spindle cell/pleomorphic sarcomas, including leiomyosarcoma, myxofibrosarcoma, pleomorphic liposarcoma, pleomorphic rhabdomyosarcoma, malignant peripheral nerve sheath tumor, angiosarcoma, extraskeletal osteosarcoma, and spindle cell/pleomorphic unclassified sarcoma (previously called spindle cell/pleomorphic malignant fibrous histiocytoma). These neoplasms show, characteristically, gains and losses of numerous chromosomes or chromosome regions, as well as amplifications. Many of them share recurrent aberrations (e.g., gain of 5p13-p15) that seem to play a significant role in tumor progression and/or metastatic dissemination. In this paper, we review the cytogenetic, molecular genetic, and clinicopathologic characteristics of the most common STS displaying complex genomic profiles. Features of diagnostic or prognostic relevance will be discussed when needed.


Soft tissue sarcoma Karyotype Genetics 


Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Fletcher CDM, Unni KK, Mertens F (eds) (2002) World Health Organization classification of tumours. Pathology and genetics of tumors of soft tissue and bone. IARC Press, LyonGoogle Scholar
  2. 2.
    Weiss SW, Goldblum JR (2008) In: Weiss SW, Goldblum JR (eds) Enzinger and Weiss’s soft tissue tumors, 5th edn. Mosby-Elsevier, PhiladelphiaGoogle Scholar
  3. 3.
    Dei Tos AP (2006) Classification of pleomorphic sarcomas: where are we now? Histopathology 48:51–62PubMedGoogle Scholar
  4. 4.
    Sandberg AA (2005) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyosarcoma. Cancer Genet Cytogenet 161:1–19PubMedGoogle Scholar
  5. 5.
    Mandahl N, Fletcher CDM, Dal Cin P et al (2000) Comparative cytogenetic study of spindle cell and pleomorphic leiomyosarcomas of soft tissues: a report from the CHAMP Study Group. Cancer Genet Cytogenet 116:66–73PubMedGoogle Scholar
  6. 6.
    Yang J, Du X, Chen K et al (2009) Genetic aberrations in soft tissue leiomyosarcoma. Cancer Lett 275:1–8PubMedGoogle Scholar
  7. 7.
    Fletcher CDM, Dal Cin P, De Wever I et al (1999) Correlation between clinicopathologic features and karyotype in spindle cell sarcomas. A report of 130 cases from the CHAMP Study Group. Am J Pathol 154:1841–1847PubMedGoogle Scholar
  8. 8.
    Wang R, Titley JC, Lu YJ et al (2003) Loss of 13q14–q21 and gain of 5p14-pter in the progression of leiomyosarcoma. Mod Pathol 16:778–785PubMedGoogle Scholar
  9. 9.
    Hu J, Rao UNM, Jasani S et al (2005) Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet Cytogenet 161:20–27PubMedGoogle Scholar
  10. 10.
    Adamowicz M, Radlwimmer B, Rieker RJ et al (2006) Frequent amplifications and abundant expression of TRIO, NKD2, and IRX2 in soft tissue sarcomas. Genes Chromosomes Cancer 45:829–838PubMedGoogle Scholar
  11. 11.
    Hernando E, Charytonowicz E, Dudas ME et al (2007) The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med 13:748–753PubMedGoogle Scholar
  12. 12.
    Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Med 10:594–601Google Scholar
  13. 13.
    Mita MM, Tolcher AW (2007) The role of mTOR inhibitors for treatment of sarcomas. Current Oncology Reports 9:316–322PubMedGoogle Scholar
  14. 14.
    Lee YF, John M, Falconer A et al (2004) A gene expression signature associated with metastatic outcome in human leiomyosarcomas. Cancer Res 64:7201–7204PubMedGoogle Scholar
  15. 15.
    Ren B, Yu YP, Jing L et al (2003) Gene expression analysis of human soft tissue leiomyosarcomas. Hum Pathol 34:549–558PubMedGoogle Scholar
  16. 16.
    Suehara Y, Kondo T, Fujii K et al (2006) Proteomic signatures corresponding to histological classification and grading of soft-tissue sarcomas. Proteomics 6:4402–4409PubMedGoogle Scholar
  17. 17.
    Kawaguchi K, Oda Y, Saito T et al (2003) Mechanisms of inactivation of the p16INK4a gene in leiomyosarcoma of soft tissue: decrease. J Pathol 201:487–495PubMedGoogle Scholar
  18. 18.
    Dei Tos AP, Maestro R, Doglioni C et al (1996) Tumor suppressor genes and related molecules in leiomyosarcoma. Am J Pathol 148:1037–1045PubMedGoogle Scholar
  19. 19.
    Seidel C, Bartel F, Rastetter M et al (2005) Alterations of cancer-related genes in soft tissue sarcomas: hypermethylation of RASSF1A is frequently detected in leiomyosarcoma and associated with poor prognosis in sarcoma. Int J Cancer 114:442–447PubMedGoogle Scholar
  20. 20.
    Kawaguchi K, Oda Y, Saito T et al (2006) DNA hypermethylation status of multiple genes in soft tissue sarcomas. Mod Pathol 19:106–114PubMedGoogle Scholar
  21. 21.
    Francis P, Namlos HM, Müller C et al (2007) Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential. BMC Genomics 8:73PubMedGoogle Scholar
  22. 22.
    Pérot G, Derré J, Coindre JM et al (2009) Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res 69:2269–2278PubMedGoogle Scholar
  23. 23.
    Deyrup AT, Lee VK, Hill CE et al (2006) Epstein–Barr virus-associated smooth muscle tumors are distinctive mesenchymal tumors reflecting multiple infection events: a clinicopathologic and molecular analysis of 29 tumors from 19 patients. Am J Surg Pathol 30:75–82PubMedGoogle Scholar
  24. 24.
    Kubben FJGM, Kroon FP, Hogendoorn PCW et al (1997) Absence of Epstein–Barr virus in a gastrointestinal stromal cell tumour (GIST) in an adult human immunodeficiency virus-seropositive patient with past Epstein–Barr virus (EBV) infection. Eur J Gastroent Hepatol 9:721–724Google Scholar
  25. 25.
    Moinfar F, Azodi M, Tavassoli FA (2007) Uterine sarcomas. Pathology 39:55–71PubMedGoogle Scholar
  26. 26.
    Quade BJ, Wang TY, Sornberger K et al (2004) Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosomes Cancer 40:97–108PubMedGoogle Scholar
  27. 27.
    Miettinen M, Fetsch JF (2006) Evaluation of biological potential of smooth muscle tumours. Histopathology 48:97–105PubMedGoogle Scholar
  28. 28.
    Fletcher CD (1992) Pleomorphic malignant fibrous histiocytoma: fact or fiction? A critical reappraisal based on 159 tumors diagnosed as pleomorphic sarcoma. Am J Surg Pathol 16:213–228PubMedCrossRefGoogle Scholar
  29. 29.
    Fletcher CDM (2006) The evolving classification of soft tissue tumours: an update based on the new WHO classification. Histopathology 48:3–12PubMedGoogle Scholar
  30. 30.
    Mertens F, Fletcher CDM, Dal Cin P et al (1998) Cytogenetic analysis of 46 pleomorphic soft tissue sarcomas and correlation with morphologic and clinical features: a report of the CHAMP Study Group. Genes Chromosomes Cancer 22:16–25PubMedGoogle Scholar
  31. 31.
    Derré J, Lagacé R, Nicolas A et al (2001) Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas. Lab Invest 81:211–215PubMedGoogle Scholar
  32. 32.
    Carneiro A, Francis P, Bendahl PO et al (2009) Indistinguishable genomic profiles and shared prognostic markers in undifferentiated pleomorphic sarcoma and leiomyosarcoma: different sides of a single coin? Lab Invest 89:668–675PubMedGoogle Scholar
  33. 33.
    Larramendy ML, Gentile M, Soloneski S et al (2008) Does comparative genomic hybridization reveal differences in DNA copy number sequence patterns between leiomyosarcoma and malignant fibrous histiocytoma? Cancer Genet Cytogenet 187:1–11PubMedGoogle Scholar
  34. 34.
    Kawai A, Kondo T, Suehara Y et al (2008) Global protein-expression analysis of bone and soft tissue sarcomas. Clin Orthop Relat Res 466:2099–2106PubMedGoogle Scholar
  35. 35.
    Mairal A, Terrier P, Chibon F et al (1999) Loss of chromosome 13 is the most frequent genomic imbalance in malignant fibrous histiocytomas: a comparative genomic hybridization analysis of a series of 30 cases. Cancer Genet Cytogenet 111:134–138PubMedGoogle Scholar
  36. 36.
    Chibon F, Mairal A, Fréneaux P et al (2000) The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma. Cancer Res 60:6339–6345PubMedGoogle Scholar
  37. 37.
    Nakayama R, Nemoto T, Takahashi H et al (2007) Gene expression analysis of soft tissue sarcomas: characterization and reclassification of malignant fibrous histiocytoma. Mod Pathol 20:749–759PubMedGoogle Scholar
  38. 38.
    Shintani K, Matsumine A, Kusuzaki K et al (2006) Expression of hypoxia-inducible factor (HIF)-I alpha as a biomarker of outcome in soft tissue sarcomas. Virchows Arch 449:673–681PubMedGoogle Scholar
  39. 39.
    Hunter KW (2004) Ezrin, a key component in tumor metastasis. Trends Mol Med 10:201–204PubMedGoogle Scholar
  40. 40.
    Kim MS, Cho WH, Song WS et al (2007) Prognostic significance of ezrin expression in pleomorphic malignant fibrous histiocytoma. Anticancer Res 27:1171–1178PubMedGoogle Scholar
  41. 41.
    Weng WH, Ahlén J, Aström K et al (2005) Prognostic impact of immunohistochemical expression of ezrin in highly malignant soft tissue sarcomas. Clinical Cancer Res 11:6198–6204Google Scholar
  42. 42.
    Riggi N, Cironi L, Provero P et al (2005) Development of Ewing’s sarcoma from bone-marrow-derived mesenchymal progenitor cells. Cancer Res 65:11459–11468PubMedGoogle Scholar
  43. 43.
    Riggi N, Cironi L, Provero P et al (2006) Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res 66:7016–7023PubMedGoogle Scholar
  44. 44.
    Matuschansky I, Hernando E, Socci ND et al (2007) Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway. J Clin Invest 117:3248–3257Google Scholar
  45. 45.
    Fletcher CD, Gustafson P, Rydholm A et al (2001) Clinicopathologic re-evaluation of 100 malignant fibrous histiocytomas: prognostic relevance of subclassification. J Clin Oncol 19:3045–3050PubMedGoogle Scholar
  46. 46.
    Deyrup AT, Haydon RC, Huo D et al (2003) Myoid differentiation and prognosis in adult pleomorphic sarcomas of the extremity: an analysis of 92 cases. Cancer 98:805–813PubMedGoogle Scholar
  47. 47.
    Bui Nguyen Binh M, Guillou L, Hostein I et al (2007) Dedifferentiated liposarcomas with divergent myosarcomatous differentiation developed in the internal trunk. A study of 27 cases and comparison to conventional dedifferentiated liposarcomas and leiomyosarcomas. Am J Surg Pathol 31:1557–1566PubMedGoogle Scholar
  48. 48.
    Montgomery E, Fisher C (2001) Myofibroblastic differentiation in malignant fibrous histiocytoma (pleomorphic myofibrosarcoma): a clinicopathological study. Histopathology 38:499–509PubMedGoogle Scholar
  49. 49.
    Fisher C (2004) Myofibrosarcoma. Virchows Arch 445:215–223PubMedGoogle Scholar
  50. 50.
    Merck C, Angervall L, Kindblom LG et al (1983) Myxofibrosarcoma. A malignant soft tissue tumor of fibroblastic–histiocytic origin. A clinicopathologic and prognostic study of 110 cases using multivariate analysis. Acta Pathol Microbiol Immunol Scand Suppl 282:1–40PubMedGoogle Scholar
  51. 51.
    Mentzel T, Calonje E, Wadden C et al (1996) Myxofibrosarcoma: clinicopathologic analysis of 75 cases with emphasis on the low grade variant. Am J Surg Pathol 20:391–405PubMedGoogle Scholar
  52. 52.
    Huang HY, Lal P, Qin J et al (2004) Low-grade myxofibrosarcoma: a clinicopathologic analysis of 49 cases treated at a single institution with simultaneous assessment of the efficacy of 3-tier and 4-tier grading systems. Hum Pathol 35:612–621PubMedGoogle Scholar
  53. 53.
    Lin CN, Chou SC, Li CF et al (2006) Prognostic factors of myxofibrosarcomas: implications of margin status, tumor necrosis, and mitotic rate on survival. J Surg Oncol 93:294–3043PubMedGoogle Scholar
  54. 54.
    Idbaih A, Coindre JM, Derré J et al (2005) Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab Invest 85:176–181PubMedGoogle Scholar
  55. 55.
    Willems SM, Debiec-Rychter M, Szuhai K et al (2006) Local recurrence of myxofibrosarcoma is associated with increased in tumour grade and cytogenetic aberrations, suggesting a multistep tumour progression model. Mod Pathol 19:407–416PubMedGoogle Scholar
  56. 56.
    Willems SM, Mohseny AB, Balog C et al (2009) Cellular/intramuscular myxoma and grade I myxofibrosarcoma are characterized by distinct genetic alterations and specific composition of their extracellular matrix. J Cell Mol Med 13:1291–1301PubMedGoogle Scholar
  57. 57.
    Nascimento AF, Bertoni F, Fletcher CDM (2007) Epithelioid variant of myxofibrosarcoma: expanding the clinicomorphologic spectrum of myxofibrosarcoma in a series of 17 cases. Am J Surg Pathol 31:99–105PubMedGoogle Scholar
  58. 58.
    Gebhard S, Coindre JM, Michels JJ et al (2002) Pleomorphic liposarcoma: clinicopathologic, immunohistochemical, and follow-up analysis of 63 cases. A study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 26:601–616PubMedGoogle Scholar
  59. 59.
    Hornick JL, Bosenberg MW, Mentzel T et al (2004) Pleomorphic liposarcoma. Clinicopathologic analysis of 57 cases. Am J Surg Pathol 28:1257–1267PubMedGoogle Scholar
  60. 60.
    Miettinen M, Enzinger FM (1999) Epithelioid variant of pleomorphic liposarcoma: a study of 12 cases of a distinctive variant of high-grade liposarcoma. Mod Pathol 12:722–728PubMedGoogle Scholar
  61. 61.
    Sandberg AA (2004) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Liposarcoma. Cancer Genet Cytogenet 155:1–24PubMedGoogle Scholar
  62. 62.
    Schmidt H, Bartel F, Kappler M et al (2005) Gains of 13q are correlated with a poor prognosis in liposarcoma. Mod Pathol 18:638–644PubMedGoogle Scholar
  63. 63.
    Taylor BS, Barretina J, Socci ND et al (2008) Functional copy-number alterations in cancer. PLoS ONE 3:e3179PubMedGoogle Scholar
  64. 64.
    Rieker RJ, Joos S, Bartsch C et al (2002) Distinct chromosomal imbalances in pleomorphic and in high-grade dedifferentiated liposarcomas. Int J Cancer 99:68–73PubMedGoogle Scholar
  65. 65.
    Fritz B, Schubert F, Wrobel G et al (2002) Microarray-based copy number and expression profiling in dedifferentiated and pleomorphic liposarcoma. Cancer Res 62:2993–2998PubMedGoogle Scholar
  66. 66.
    Singer S, Socci ND, Ambrosini G et al (2007) Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res 67:6626–6636PubMedGoogle Scholar
  67. 67.
    Matuschansky I, Hernando E, Socci ND et al (2008) A development model of sarcomagenesis defines a differentiation-based classification for liposarcomas. Am J Pathol 172:1069–1080Google Scholar
  68. 68.
    Dei Tos AP, Mentzel T, Fletcher CDM (1998) Primary liposarcoma of the skin: a rare neoplasm with unusual high grade features. Am J Dermatopathol 20:332–338PubMedGoogle Scholar
  69. 69.
    Furlong MA, Mentzel T, Fanburg-Smith JC (2001) Pleomorphic rhabdomyosarcoma in adults: a clinicopathologic study of 38 cases with emphasis on morphologic variants and recent skeletal muscle-specific markers. Mod Pathol 14:595–603PubMedGoogle Scholar
  70. 70.
    Furlong MA, Fanburg-Smith JC (2001) Pleomorphic rhabdomyosarcoma in children: four cases in the pediatric age group. Ann Diagn Pathol 5:199–206PubMedGoogle Scholar
  71. 71.
    Little DJ, Ballo MT, Zagars GK et al (2002) Adult rhabdomyosarcoma. Outcome following multimodality treatment. Cancer 95:377–388PubMedGoogle Scholar
  72. 72.
    Parham DM, Ellison DA (2006) Rhabdomyosarcomas in adults and children. An update. Arch Pathol Lab Med 130:1454–1465PubMedGoogle Scholar
  73. 73.
    Li G, Ogose A, Kawashima H et al (2009) Cytogenetic and real-time quantitative reverse-transcriptase polymerase chain reaction analyses in pleomorphic rhabdomyosarcoma. Cancer Genet Cytogenet 192:1–9PubMedGoogle Scholar
  74. 74.
    Gordon A, McManus A, Anderson J et al (2003) Chromosomal imbalances in pleomorphic rhabdomyosarcomas and identification of the alveolar rhabdomyosarcoma-associated PAX3-FOXO1A fusion gene in one case. Cancer Genet Cytogenet 140:73–77PubMedGoogle Scholar
  75. 75.
    Scheithauer BW, Louis DN, Hunter S et al (2007) Malignant peripheral nerve sheath tumour (MPNST). In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) World Health Organization classification of tumours of the central nervous system. IARC, Lyon, pp 160–162Google Scholar
  76. 76.
    Mertens F, Dal Cin P, De Wever I et al (2000) Cytogenetic characterization of peripheral nerve sheath tumours: a report of the CHAMP Study Group. J Pathol 190:31–38PubMedGoogle Scholar
  77. 77.
    Bridge RS, Bridge JA, Neff JR et al (2004) Recurrent chromosomal imbalances and structurally abnormal breakpoints within complex karyotypes of malignant peripheral nerve sheath tumour and malignant Triton tumor: a cytogenetic and molecular cytogenetic study. J Clin Pathol 57:1172–1178PubMedGoogle Scholar
  78. 78.
    Kresse SH, Skarn M, Ohnstad HO et al (2008) DNA copy number changes in high-grade malignant peripheral nerve sheath tumors by array CGH. Mol Cancer 7:48PubMedGoogle Scholar
  79. 79.
    Storlazzi CT, Brekke HR, Mandahl N et al (2006) Identification of a novel amplicon at distal 17q containing the BIRC5/survivin gene in malignant peripheral nerve sheath tumours. J Pathol 209:492–500PubMedGoogle Scholar
  80. 80.
    Schmidt H, Würl P, Taubert H et al (1999) Genomic imbalances in 7p and 17q in malignant peripheral nerve sheath tumors are clinically relevant. Genes Chromosomes Cancer 25:205–211PubMedGoogle Scholar
  81. 81.
    Skotheim RI, Kallioniemi A, Bjerkhagen B et al (2003) Topoisomerase-II α is upregulated in malignant peripheral nerve sheath tumors and associated with clinical outcome. J Clin Oncol 21:4586–4591PubMedGoogle Scholar
  82. 82.
    Schmidt H, Taubert H, Würl P et al (2001) Cytogenetic characterization of six malignant peripheral nerve sheath tumors: comparison of karyotyping and comparative genomic hybridization. Cancer Genet Cytogenet 128:14–23PubMedGoogle Scholar
  83. 83.
    Mantripragada KK, Spurlock G, Kluwe L et al (2008) High-resolution DNA copy number profiling of malignant peripheral nerve sheath tumors using targeted microarray-based comparative genomic hybridization. Clinical Cancer Res 14:1015–1024Google Scholar
  84. 84.
    Carroll SL, Stonecypher MS (2004) Tumor suppressor mutations and growth factor signalling in the pathogenesis of NF1-associated peripheral nerve sheath tumors. I. The role of tumor suppressor mutations. J Neuropathol Exp Neurol 63:1115–1123PubMedGoogle Scholar
  85. 85.
    Przygodzki RM, Finkelstein SD, Keohavong P et al (1997) Sporadic and thorotrast-induced angiosarcomas of the liver manifest frequent and multiple point mutations in KRAS-2. Lab Invest 76:153–159PubMedGoogle Scholar
  86. 86.
    Naka N, Tomita Y, Nakanishi H et al (1997) Mutations of p53 tumor suppressor gene in angiosarcoma. Int J Cancer 71:952–955PubMedGoogle Scholar
  87. 87.
    Zietz C, Rossle M, Haas C et al (1998) MDM2 oncoprotein overexpression, p53 gene mutation, and VEGF upregulation in angiosarcomas. Am J Pathol 153:1425–1433PubMedGoogle Scholar
  88. 88.
    Domfeh AB, Fichera M, Hunt JL (2006) Allelic loss of 3 different tumor suppressor gene loci in benign and malignant endothelial tumors of the head and neck. Arch Pathol Lab Med 130:1184–1187PubMedGoogle Scholar
  89. 89.
    Ahmad SA, Patel SR, Ballo MT et al (2002) Extraosseous osteosarcoma: response to treatment and long-term outcome. J Clin Oncol 20:521–527PubMedGoogle Scholar
  90. 90.
    Jensen ML, Schumacher B, Jensen OM et al (1998) Extraskeletal osteosarcomas. A clinicopathologic study of 25 cases. Am J Surg Pathol 22:588–594Google Scholar
  91. 91.
    Mertens F, Larramendy M, Gustavsson A et al (2000) Radiation-associated sarcomas are characterized by complex karyotypes with frequent rearrangements of chromosome arm 3p. Cancer Genet Cytogenet 116:89–96PubMedGoogle Scholar
  92. 92.
    Mohamed AN, Zalupski MM, Ryan JR et al (1997) Cytogenetic aberrations and DNA ploidy in soft tissue sarcoma. A southwest oncology group study. Cancer Genet Cytogenet 99:45–53PubMedGoogle Scholar
  93. 93.
    Lau CC, Harris CP, Lu XY et al (2004) Frequent amplification and rearrangement of chromosomal bands 6p12–p21 and 17p11.2 in osteosarcoma. Genes Chromosomes Cancer 39:11–21PubMedGoogle Scholar
  94. 94.
    Selvarajah S, Yoshimoto M, Ludkovski O et al (2008) Genomic signatures of chromosomal instability and osteosarcoma progression detected by high resolution array CGH and interphase FISH. Cytogenet Genome Res 122:5–15PubMedGoogle Scholar
  95. 95.
    Bayani J, Zielenska M, Pandita A et al (2003) Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes Chromosomes Cancer 36:7–16PubMedGoogle Scholar
  96. 96.
    Bridge JA, Nelson M, McComb E et al (1997) Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet Cytogenet 95:74–87PubMedGoogle Scholar
  97. 97.
    Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors. Osteosarcoma and related tumors. Cancer Genet Cytogenet 145:1–30PubMedGoogle Scholar
  98. 98.
    Montgomery EA, Devaney KO, Giordano TJ et al (1998) Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: a distinctive lesion with features simulating inflammatory conditions, Hodgkin's disease, and various sarcomas. Mod Pathol 11:384–391PubMedGoogle Scholar
  99. 99.
    Meis-Kindblom JM, Kindblom LG (1998) Acral myxoinflammatory fibroblastic sarcoma: a low-grade tumor of the hands and feet. Am J Surg Pathol 22:911–924PubMedGoogle Scholar
  100. 100.
    Lambert I, Debiec-Rychter M, Guelinckx P et al (2001) Acral myxoinflammatory fibroblastic sarcoma with unique clonal chromosomal changes. Virchows Arch 438:509–512PubMedGoogle Scholar
  101. 101.
    Baumhoer D, Glatz K, Schulten H-J et al (2007) Myxoinflammatory fibroblastic sarcoma: investigations by comparative genomic hybridization of two cases and review of the literature. Virchows Arch 451:923–928PubMedGoogle Scholar
  102. 102.
    Mansoor A, Fidda N, Himoe E et al (2004) Myxoinflammatory fibroblastic sarcoma with complex supernumerary ring chromosomes composed of chromosome 3 segments. Cancer Genet Cytogenet 152:61–65PubMedGoogle Scholar
  103. 103.
    Hallor KH, Sciot R, Staaf J et al (2009) Two genetic pathways, t(1;10) and amplification of 3p11–12, in myxoinflammatory fibroblastic sarcoma, haemosiderotic fibrolipomatous tumour, and morphologically similar lesions. J Pathol 217:716–727PubMedGoogle Scholar
  104. 104.
    Ida CM, Rolig KA, Hulshizer RL et al (2007) Myxoinflammatory fibroblastic sarcoma showing t(2;6)(q31;p21.3) as a sole cytogenetic abnormality. Cancer Genet Cytogenet 177:139–142PubMedGoogle Scholar
  105. 105.
    Laskin WB, Silverman TA, Enzinger FM (1998) Postradiation soft tissue sarcomas. An analysis of 53 cases. Cancer 62:2330–2340Google Scholar
  106. 106.
    Wiklund TA, Blomqvist CP, Raty J et al (1991) Postirradiation sarcoma. Analysis of a nationwide cancer registry material. Cancer 68:524–531PubMedGoogle Scholar
  107. 107.
    Lagrange JL, Ramaioli A, Chateau MC et al (2000) Sarcoma after radiation therapy: retrospective multi institutional study of 80 histologically confirmed cases. Radiation therapist and pathologist groups of the Federation Nationale des Centres de Lutte Contre le Cancer. Radiology 216:197–205PubMedGoogle Scholar
  108. 108.
    Inoue YZ, Frassica FJ, Sim FH et al (2000) Clinicopathologic features and treatment of postirradiation sarcoma of bone and soft tissue. J Surg Oncol 75:42–50PubMedGoogle Scholar
  109. 109.
    Nakanishi H, Tomita Y, Myoui A et al (1998) Mutation of the p53 gene in postradiation sarcoma. Lab Invest 78:727–733PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.University Institute of PathologyCentre Hospitalier Universitaire Vaudois and University of LausanneLausanneSwitzerland
  2. 2.Genetics and Biology of Cancers, and INSERM U830Institut CurieParisFrance

Personalised recommendations