Virchows Archiv

, Volume 455, Issue 3, pp 225–233 | Cite as

Neutrophil gelatinase-associated lipocalin (NGAL/Lcn2) is upregulated in gastric mucosa infected with Helicobacter pylori

  • Warner Alpízar-AlpízarEmail author
  • Ole Didrik Laerum
  • Martin Illemann
  • José A. Ramírez
  • Adriana Arias
  • Wendy Malespín-Bendaña
  • Vanessa Ramírez
  • Leif R. Lund
  • Niels Borregaard
  • Boye Schnack Nielsen
Original Article


Helicobacter pylori infection is one of the most significant risk factors for gastric cancer. The infection is established early in life and persists lifelong leading to a sustained chronic inflammation. Iron is essential for most living organisms. Bacteria use several mechanisms to acquire iron from their hosts, including the synthesis of the potent iron chelators known as siderophores. Hosts cells may express the siderophore-binding protein neutrophil gelatinase-associated lipocalin (NGAL/lipocalin-2 (Lcn2)) in response to infection, thus preventing bacterial iron uptake. We have characterized here the pattern of expression of NGAL/Lcn2 in gastric mucosa (45 non-neoplastic and 38 neoplastic tissue samples) and explored the connection between NGAL/Lcn2 expression and H. pylori infection. Immunohistochemical analysis showed high NGAL/Lcn2 expression in normal and gastritis-affected mucosa compared to low expression in intestinal metaplasia, dysplasia, and gastric cancer. In normal and gastritis-affected mucosa (n = 36 tissue samples), NGAL/Lcn2 was more frequently seen in epithelial cells located at the neck and base of the glands in H. pylori-positive cases than in similar epithelial cells of noninfected cases (Fisher’s exact test, p = 0.04). In conclusion, the high expression of NGAL/Lcn2 in normal and gastritis-affected mucosa infected with H. pylori suggests that NGAL/Lcn2 is upregulated locally in response to this bacterial infection. It is discussed whether this may have a causal relation to the development of gastric cancer.


NGAL/Lcn2 Helicobacter pylori Inflammation Gastritis Intestinal metaplasia Gastric cancer 



Intestinal metaplasia


Monoclonal antibody


Polyclonal antibodies


Trinitrophenyl hapten


Neutrophil gelatinase-associated lipocalin





We thank Ms. Öznur Turan and Ms. Agnieszka Ingvorsen for their excellent technical assistance and Mr. John Post for his photographic assistance. This study was supported by the Danish Cancer Society, the Lundbeck Foundation, Haukeland University Hospital (Helse-Vest), and Vicerrectoría de Investigación of the University of Costa Rica.

Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Parkin DM, Bray FI, Devesa SS (2001) Cancer burden in the year 2000. The global picture. Eur J Cancer 37(Suppl 8):S4–S66PubMedCrossRefGoogle Scholar
  2. 2.
    Stemmermann GN, Fenoglio-Preiser C (2002) Gastric carcinoma distal to the cardia: a review of the epidemiological pathology of the precusors to a preventable cancer. Pathology 34:494–503PubMedGoogle Scholar
  3. 3.
    Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process—First American Cancer Society Award Lecture on cancer epidemiology and prevention. Cancer Res 52:6735–6740PubMedGoogle Scholar
  4. 4.
    Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S et al (2001) Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 345:784–789PubMedCrossRefGoogle Scholar
  5. 5.
    Huang JQ, Zheng GF, Sumanac K, Irvine EJ, Hunt RH (2003) Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 125:1636–1644PubMedCrossRefGoogle Scholar
  6. 6.
    Wilson KT, Crabtree JE (2007) Immunology of Helicobacter pylori: insights into the failure of the immune response and perspectives on vaccine studies. Gastroenterology 133:288–308PubMedCrossRefGoogle Scholar
  7. 7.
    Robinson K, Argent RH, Atherton JC (2007) The inflammatory and immune response to Helicobacter pylori infection. Best Pract Res Clin Gastroenterol 21:237–259PubMedCrossRefGoogle Scholar
  8. 8.
    Correa P, Houghton J (2007) Carcinogenesis of Helicobacter pylori. Gastroenterology 133:659–672PubMedCrossRefGoogle Scholar
  9. 9.
    Fox JG, Wang TC (2007) Inflammation, atrophy, and gastric cancer. J Clin Invest 117:60–69PubMedCrossRefGoogle Scholar
  10. 10.
    Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedGoogle Scholar
  11. 11.
    Braun V, Braun M (2002) Active transport of iron and siderophore antibiotics. Curr Opin Microbiol 5:194–201PubMedCrossRefGoogle Scholar
  12. 12.
    Krewulak KD, Vogel HJ (2008) Structural biology of bacterial iron uptake. Biochim Biophys Acta 1778:1781–1804PubMedCrossRefGoogle Scholar
  13. 13.
    Kjeldsen L, Johnsen AH, Sengelov H, Borregaard N (1993) Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J Biol Chem 268:10425–10432PubMedGoogle Scholar
  14. 14.
    Cowland JB, Borregaard N (1997) Molecular characterization and pattern of tissue expression of the gene for neutrophil gelatinase-associated lipocalin from humans. Genomics 45:17–23PubMedCrossRefGoogle Scholar
  15. 15.
    Kjeldsen L, Cowland JB, Borregaard N (2000) Human neutrophil gelatinase-associated lipocalin and homologous proteins in rat and mouse. Biochim Biophys Acta 1482:272–283PubMedGoogle Scholar
  16. 16.
    Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN et al (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell 10:1033–1043PubMedCrossRefGoogle Scholar
  17. 17.
    Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK (2005) Siderocalin (Lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13:29–41PubMedCrossRefGoogle Scholar
  18. 18.
    Nielsen BS, Borregaard N, Bundgaard JR, Timshel S, Sehested M et al (1996) Induction of NGAL synthesis in epithelial cells of human colorectal neoplasia and inflammatory bowel diseases. Gut 38:414–420PubMedCrossRefGoogle Scholar
  19. 19.
    Cowland JB, Sorensen OE, Sehested M, Borregaard N (2003) Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol 171:6630–6639PubMedGoogle Scholar
  20. 20.
    Sorensen OE, Cowland JB, Theilgaard-Monch K, Liu L, Ganz T et al (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 170:5583–5589PubMedGoogle Scholar
  21. 21.
    Berger T, Togawa A, Duncan GS, Elia AJ, You-Ten A et al (2006) Lipocalin 2-deficient mice exhibit increased sensitivity to Escherichia coli infection but not to ischemia-reperfusion injury. Proc Natl Acad Sci U S A 103:1834–1839PubMedCrossRefGoogle Scholar
  22. 22.
    Chan YR, Liu JS, Pociask DA, Zheng M, Mietzner TA et al (2009) Lipocalin 2 is required for pulmonary host defense against Klebsiella infection. J Immunol 182:4947–4956PubMedCrossRefGoogle Scholar
  23. 23.
    Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA et al (2004) Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432:917–921PubMedCrossRefGoogle Scholar
  24. 24.
    van Amsterdam K, van Vliet AH, Kusters JG, van der Ende A (2006) Of microbe and man: determinants of Helicobacter pylori-related diseases. FEMS Microbiol Rev 30:131–156PubMedCrossRefGoogle Scholar
  25. 25.
    Velayudhan J, Hughes NJ, McColm AA, Bagshaw J, Clayton CL et al (2000) Iron acquisition and virulence in Helicobacter pylori: a major role for FeoB, a high-affinity ferrous iron transporter. Mol Microbiol 37:274–286PubMedCrossRefGoogle Scholar
  26. 26.
    Waidner B, Greiner S, Odenbreit S, Kavermann H, Velayudhan J et al (2002) Essential role of ferritin Pfr in Helicobacter pylori iron metabolism and gastric colonization. Infect Immun 70:3923–3929PubMedCrossRefGoogle Scholar
  27. 27.
    Perez-Perez GI, Israel DA (2000) Role of iron in Helicobacter pylori: its influence in outer membrane protein expression and in pathogenicity. Eur J Gastroenterol Hepatol 12:1263–1265PubMedCrossRefGoogle Scholar
  28. 28.
    Friedl A, Stoesz SP, Buckley P, Gould MN (1999) Neutrophil gelatinase-associated lipocalin in normal and neoplastic human tissues. Cell type-specific pattern of expression. Histochem J 31:433–441PubMedCrossRefGoogle Scholar
  29. 29.
    Playford RJ, Belo A, Poulsom R, Fitzgerald AJ, Harris K et al (2006) Effects of mouse and human lipocalin homologues 24p3/lcn2 and neutrophil gelatinase-associated lipocalin on gastrointestinal mucosal integrity and repair. Gastroenterology 131:809–817PubMedCrossRefGoogle Scholar
  30. 30.
    Hornsby MJ, Huff JL, Kays RJ, Canfield DR, Bevins CL et al (2008) Helicobacter pylori induces an antimicrobial response in rhesus macaques in a cag pathogenicity island-dependent manner. Gastroenterology 134:1049–1057PubMedCrossRefGoogle Scholar
  31. 31.
    Japanese Gastric Cancer A (1998) Japanese classification of gastric carcinoma - 2nd english edition. Gastric Cancer 1:10–24CrossRefGoogle Scholar
  32. 32.
    Kjeldsen L, Koch C, Arnljots K, Borregaard N (1996) Characterization of two ELISAs for NGAL, a newly described lipocalin in human neutrophils. J Immunol Methods 198:155–164PubMedCrossRefGoogle Scholar
  33. 33.
    Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312:643–646PubMedCrossRefGoogle Scholar
  34. 34.
    Nielsen BS, Rank F, Illemann M, Lund LR, Dano K (2007) Stromal cells associated with early invasive foci in human mammary ductal carcinoma in situ coexpress urokinase and urokinase receptor. Int J Cancer 120:2086–2095PubMedCrossRefGoogle Scholar
  35. 35.
    Atherton JC (2006) The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol 1:63–96PubMedCrossRefGoogle Scholar
  36. 36.
    Xu S, Venge P (2000) Lipocalins as biochemical markers of disease. Biochim Biophys Acta 1482:298–307PubMedGoogle Scholar
  37. 37.
    Valle J, Kekki M, Sipponen P, Ihamaki T, Siurala M (1996) Long-term course and consequences of Helicobacter pylori gastritis. Results of a 32-year follow-up study. Scand J Gastroenterol 31:546–550PubMedCrossRefGoogle Scholar
  38. 38.
    Nelson AL, Barasch JM, Bunte RM, Weiser JN (2005) Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 7:1404–1417PubMedCrossRefGoogle Scholar
  39. 39.
    Saiga H, Nishimura J, Kuwata H, Okuyama M, Matsumoto S et al (2008) Lipocalin 2-dependent inhibition of mycobacterial growth in alveolar epithelium. J Immunol 181:8521–8527PubMedGoogle Scholar
  40. 40.
    Gutierrez-Gonzalez L, Wright NA (2008) Biology of intestinal metaplasia in 2008: more than a simple phenotypic alteration. Dig Liver Dis 40:510–522PubMedCrossRefGoogle Scholar
  41. 41.
    Kokkola A, Kosunen TU, Puolakkainen P, Sipponen P, Harkonen M et al (2003) Spontaneous disappearance of Helicobacter pylori antibodies in patients with advanced atrophic corpus gastritis. APMIS 111:619–624PubMedCrossRefGoogle Scholar
  42. 42.
    Dhaenens L, Szczebara F, Husson MO (1997) Identification, characterization, and immunogenicity of the lactoferrin-binding protein from Helicobacter pylori. Infect Immun 65:514–518PubMedGoogle Scholar
  43. 43.
    Worst DJ, Otto BR, de Graaff J (1995) Iron-repressible outer membrane proteins of Helicobacter pylori involved in heme uptake. Infect Immun 63:4161–4165PubMedGoogle Scholar
  44. 44.
    Husson MO, Legrand D, Spik G, Leclerc H (1993) Iron acquisition by Helicobacter pylori: importance of human lactoferrin. Infect Immun 61:2694–2697PubMedGoogle Scholar
  45. 45.
    Illingworth DS, Walter KS, Griffiths PL, Barclay R (1993) Siderophore production and iron-regulated envelope proteins of Helicobacter pylori. Zentralbl Bakteriol 280:113–119PubMedGoogle Scholar
  46. 46.
    Dhaenens L, Szczebara F, Van Nieuwenhuyse S, Husson MO (1999) Comparison of iron uptake in different Helicobacter species. Res Microbiol 150:475–481PubMedCrossRefGoogle Scholar
  47. 47.
    Sorensen OE, Thapa DR, Roupe KM, Valore EV, Sjobring U et al (2006) Injury-induced innate immune response in human skin mediated by transactivation of the epidermal growth factor receptor. J Clin Invest 116:1878–1885PubMedCrossRefGoogle Scholar
  48. 48.
    Algood HM, Cover TL (2006) Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev 19:597–613PubMedCrossRefGoogle Scholar
  49. 49.
    Brandt S, Kwok T, Hartig R, Konig W, Backert S (2005) NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A 102:9300–9305PubMedCrossRefGoogle Scholar
  50. 50.
    Cowland JB, Muta T, Borregaard N (2006) IL-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J Immunol 176:5559–5566PubMedGoogle Scholar
  51. 51.
    Raffatellu M, George MD, Akiyama Y, Hornsby MJ, Nuccio SP et al (2009) Lipocalin-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5:476–486PubMedCrossRefGoogle Scholar
  52. 52.
    Clifton MC, Corrent C, Strong RK (2009) Siderocalins: siderophore-binding proteins of the innate immune system. Biometals 22:557–564PubMedCrossRefGoogle Scholar
  53. 53.
    Stoesz SP, Friedl A, Haag JD, Lindstrom MJ, Clark GM et al (1998) Heterogeneous expression of the lipocalin NGAL in primary breast cancers. Int J Cancer 79:565–572PubMedCrossRefGoogle Scholar
  54. 54.
    Furutani M, Arii S, Mizumoto M, Kato M, Imamura M (1998) Identification of a neutrophil gelatinase-associated lipocalin mRNA in human pancreatic cancers using a modified signal sequence trap method. Cancer Lett 122:209–214PubMedCrossRefGoogle Scholar
  55. 55.
    Lim R, Ahmed N, Borregaard N, Riley C, Wafai R et al (2007) Neutrophil gelatinase-associated lipocalin (NGAL) an early-screening biomarker for ovarian cancer: NGAL is associated with epidermal growth factor-induced epithelio-mesenchymal transition. Int J Cancer 120:2426–2434PubMedCrossRefGoogle Scholar
  56. 56.
    Bauer M, Eickhoff JC, Gould MN, Mundhenke C, Maass N et al (2008) Neutrophil gelatinase-associated lipocalin (NGAL) is a predictor of poor prognosis in human primary breast cancer. Breast Cancer Res Treat 108:389–397PubMedCrossRefGoogle Scholar
  57. 57.
    Devarajan P (2007) Neutrophil gelatinase-associated lipocalin: new paths for an old shuttle. Cancer Ther 5:463–470PubMedGoogle Scholar
  58. 58.
    Yang J, Bielenberg DR, Rodig SJ, Doiron R, Clifton MC et al (2009) Lipocalin 2 promotes breast cancer progression. Proc Natl Acad Sci U S A 106:3913–3918PubMedCrossRefGoogle Scholar
  59. 59.
    Devireddy LR, Gazin C, Zhu X, Green MR (2005) A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and iron uptake. Cell 123:1293–1305PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Warner Alpízar-Alpízar
    • 1
    • 2
    • 3
    • 8
    Email author
  • Ole Didrik Laerum
    • 1
  • Martin Illemann
    • 3
  • José A. Ramírez
    • 4
  • Adriana Arias
    • 4
  • Wendy Malespín-Bendaña
    • 2
  • Vanessa Ramírez
    • 2
  • Leif R. Lund
    • 5
  • Niels Borregaard
    • 6
  • Boye Schnack Nielsen
    • 3
    • 7
  1. 1.The Gade Institute, University of Bergen and Department of PathologyHaukeland University HospitalBergenNorway
  2. 2.Cancer Research Program, Health Research Institute (INISA)University of Costa RicaSan JoséCosta Rica
  3. 3.The Finsen LaboratoryCopenhagenDenmark
  4. 4.Department of PathologyDr. Rafael A. Calderón Guardia HospitalSan JoséCosta Rica
  5. 5.Department of Biology, Section for Cell and Developmental BiologyUniversity of CopenhagenCopenhagenDenmark
  6. 6.The Granulocyte Research Laboratory, Department of HaematologyUniversity of CopenhagenCopenhagenDenmark
  7. 7.Exiqon A/S, Diagnostic Product DevelopmentVedbækDenmark
  8. 8.The Gade Institute, Department of PathologyHaukeland University HospitalBergenNorway

Personalised recommendations