Virchows Archiv

, Volume 455, Issue 1, pp 1–13

Stem cells and solid cancers

  • Stuart A. C. McDonald
  • Trevor A. Graham
  • Stefanie Schier
  • Nicholas A. Wright
  • Malcolm R. Alison
Review and Perspective

Abstract

Recently, there have been significant advances in our knowledge of stem cells found in tissues that can develop solid tumours. In particular, novel stem cell markers have been identified for the first time identifying multipotential cells: a required characteristic of a stem cell. The scarcity of cancer stem cells has been questioned. Current dogma states that they are rare, but novel research has suggested that this may not be the case. Here, we review the latest literature on stem cells, particularly cancer stem cells within solid tumours. We discuss current thinking on how stem cells develop into cancer stem cells and how they protect themselves from doing so and do they express unique markers that can be used to detect stem cells. We attempt to put into perspective these latest advances in stem cell biology and their potential for cancer therapy.

Keywords

Stem cell Cancer stem cell Intestine Liver Lung 

References

  1. 1.
    Radtke F, Clevers H (2005) Self-renewal and cancer of the gut: two sides of a coin. Science 307:1904–1909PubMedGoogle Scholar
  2. 2.
    Tomlinson I, Bodmer W (1999) Selection, the mutation rate and cancer: ensuring that the tail does not wag the dog. Nat Med 5:11–12PubMedGoogle Scholar
  3. 3.
    Pierce GB, Nakane PK, Martinez-Hernandez A et al (1977) Ultrastructural comparison of differentiation of stem cells of murine adenocarcinomas of colon and breast with their normal counterparts. J Natl Cancer Inst 58:1329–1345PubMedGoogle Scholar
  4. 4.
    Hamburger AW, Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197:461–463PubMedGoogle Scholar
  5. 5.
    Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222PubMedGoogle Scholar
  6. 6.
    Mayhall EA, Paffett-Lugassy N, Zon LI (2004) The clinical potential of stem cells. Curr Opin Cell Biol 16:713–720PubMedGoogle Scholar
  7. 7.
    Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat 141:537–561PubMedGoogle Scholar
  8. 8.
    Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anat 141:461–479PubMedGoogle Scholar
  9. 9.
    Cheng H, Leblond CP (1974) Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. III. Entero-endocrine cells. Am J Anat 141:503–519PubMedGoogle Scholar
  10. 10.
    Niemann C, Watt FM (2002) Designer skin: lineage commitment in postnatal epidermis. Trends Cell Biol 12:185–192PubMedGoogle Scholar
  11. 11.
    Rossi DJ, Jamieson CH, Weissman IL (2008) Stems cells and the pathways to aging and cancer. Cell 132:681–696PubMedGoogle Scholar
  12. 12.
    Stemple DL, Anderson DJ (1993) Lineage diversification of the neural crest: in vitro investigations. Dev Biol 159:12–23PubMedGoogle Scholar
  13. 13.
    Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776PubMedGoogle Scholar
  14. 14.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495PubMedGoogle Scholar
  15. 15.
    Alonso L, Fuchs E (2003) Stem cells of the skin epithelium. Proc Natl Acad Sci U S A 100(Suppl 1):11830–11835PubMedGoogle Scholar
  16. 16.
    Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. IV. Effects of resecting 30% of the small intestine. Am J Anat 160:93–103PubMedGoogle Scholar
  17. 17.
    Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am J Anat 160:77–91PubMedGoogle Scholar
  18. 18.
    Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. II. Evidence from paneth cells in the newborn mouse. Am J Anat 160:65–75PubMedGoogle Scholar
  19. 19.
    Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am J Anat 160:51–63PubMedGoogle Scholar
  20. 20.
    Bjerknes M, Cheng H (1981) The stem-cell zone of the small intestinal epithelium. V. Evidence for controls over orientation of boundaries between the stem-cell zone, proliferative zone, and the maturation zone. Am J Anat 160:105–112PubMedGoogle Scholar
  21. 21.
    Forbes S, Vig P, Poulsom R et al (2002) Hepatic stem cells. J Pathol 197:510–518PubMedGoogle Scholar
  22. 22.
    Bonner-Weir S, Sharma A (2002) Pancreatic stem cells. J Pathol 197:519–526PubMedGoogle Scholar
  23. 23.
    Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430PubMedGoogle Scholar
  24. 24.
    Crosnier C, Stamataki D, Lewis J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7:349–359PubMedGoogle Scholar
  25. 25.
    Madison BB, Braunstein K, Kuizon E et al (2005) Epithelial hedgehog signals pattern the intestinal crypt–villus axis. Development 132:279–289PubMedGoogle Scholar
  26. 26.
    van den Brink GR, Bleuming SA, Hardwick JC et al (2004) Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 36:277–282PubMedGoogle Scholar
  27. 27.
    Kiger AA, Jones DL, Schulz C et al (2001) Stem cell self-renewal specified by JAK–STAT activation in response to a support cell cue. Science 294:2542–2545PubMedGoogle Scholar
  28. 28.
    Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK–STAT signaling. Science 294:2546–2549PubMedGoogle Scholar
  29. 29.
    Spradling A, Drummond-Barbosa D, Kai T (2001) Stem cells find their niche. Nature 414:98–104PubMedGoogle Scholar
  30. 30.
    Brinster RL, Zimmermann JW (1994) Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A 91:11298–11302PubMedGoogle Scholar
  31. 31.
    Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474PubMedGoogle Scholar
  32. 32.
    Barker N, Clevers H (2007) Tracking down the stem cells of the intestine: strategies to identify adult stem cells. Gastroenterology 133:1755–1760PubMedGoogle Scholar
  33. 33.
    Bjerknes M, Cheng H (1999) Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116:7–14PubMedGoogle Scholar
  34. 34.
    Greaves LC, Preston SL, Tadrous PJ et al (2006) Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. Proc Natl Acad Sci U S A 103:714–719PubMedGoogle Scholar
  35. 35.
    Gutierrez-Gonzalez L, Deheragoda M, Elia G et al (2009) Analysis of the clonal architecture of the human small intestine establishes a common stem cell for all lineages and reveals a mechanism for the fixation and spread of mutations. J Pathol 217:489–496. doi:10.1002/path.2502 PubMedGoogle Scholar
  36. 36.
    McDonald SA, Greaves LC, Gutierrez-Gonzalez L et al (2008) Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 134:500–510PubMedGoogle Scholar
  37. 37.
    Yatabe Y, Tavare S, Shibata D (2001) Investigating stem cells in human colon by using methylation patterns. Proc Natl Acad Sci U S A 98:10839–10844PubMedGoogle Scholar
  38. 38.
    Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007PubMedGoogle Scholar
  39. 39.
    Cai WB, Roberts SA, Potten CS et al (1997) The number of clonogenic cells in crypts in three regions of murine large intestine. Int J Radiat Biol 71:573–579PubMedGoogle Scholar
  40. 40.
    Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920PubMedGoogle Scholar
  41. 41.
    Wright NA, Alison MR (1984) The biology of epithelial cell populations. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Brabletz S, Schmalhofer O, Brabletz T (2009) Gastrointestinal stem cells in development and cancer. J Pathol 217:307–317PubMedGoogle Scholar
  43. 43.
    Jensen UB, Lowell S, Watt FM (1999) The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labelling and lineage analysis. Development 126:2409–2418PubMedGoogle Scholar
  44. 44.
    Pepper JW, Sprouffske K, Maley CC (2007) Animal cell differentiation patterns suppress somatic evolution. PLoS Comput Biol 3:e250PubMedGoogle Scholar
  45. 45.
    Cairns J (1975) Mutation selection and the natural history of cancer. Nature 255:197–200PubMedGoogle Scholar
  46. 46.
    Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115:2381–2388PubMedGoogle Scholar
  47. 47.
    Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development 132:681–687PubMedGoogle Scholar
  48. 48.
    Shinin V, Gayraud-Morel B, Gomes D et al (2006) Asymmetric division and cosegregation of template DNA strands in adult muscle satellite cells. Nat Cell Biol 8:677–687PubMedGoogle Scholar
  49. 49.
    Lansdorp PM (2007) Immortal strands? Give me a break. Cell 129:1244–1247PubMedGoogle Scholar
  50. 50.
    Kiel MJ, He S, Ashkenazi R et al (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:238–242PubMedGoogle Scholar
  51. 51.
    van Leeuwen IM, Byrne HM, Jensen OE et al (2006) Crypt dynamics and colorectal cancer: advances in mathematical modelling. Cell Prolif 39:157–181PubMedGoogle Scholar
  52. 52.
    Goodell MA, Brose K, Paradis G et al (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806PubMedGoogle Scholar
  53. 53.
    Alison MR, Poulsom R, Otto WR et al (2003) Plastic adult stem cells: will they graduate from the school of hard knocks? J Cell Sci 116:599–603PubMedGoogle Scholar
  54. 54.
    Hirschmann-Jax C, Foster AE, Wulf GG et al (2005) A distinct “side population” of cells in human tumor cells: implications for tumor biology and therapy. Cell Cycle 4:203–205PubMedGoogle Scholar
  55. 55.
    Morita Y, Ema H, Yamazaki S et al (2006) Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 108:2850–2856PubMedGoogle Scholar
  56. 56.
    Storms RW, Trujillo AP, Springer JB et al (1999) Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 96:9118–9123PubMedGoogle Scholar
  57. 57.
    Cheung AM, Wan TS, Leung JC et al (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 21:1423–1430PubMedGoogle Scholar
  58. 58.
    Giangreco A, Shen H, Reynolds SD et al (2004) Molecular phenotype of airway side population cells. Am J Physiol Lung Cell Mol Physiol 286:L624–630PubMedGoogle Scholar
  59. 59.
    Vig P, Russo FP, Edwards RJ et al (2006) The sources of parenchymal regeneration after chronic hepatocellular liver injury in mice. Hepatology 43:316–324PubMedGoogle Scholar
  60. 60.
    Barker N (2008) The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 468:5–15PubMedGoogle Scholar
  61. 61.
    van de Wetering M, Sancho E, Verweij C et al (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250PubMedGoogle Scholar
  62. 62.
    van Es JH, Jay P, Gregorieff A et al (2005) Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7:381–386PubMedGoogle Scholar
  63. 63.
    Sato T, Vries RG, Snippert HJ, et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. doi:10.1038/nature07935
  64. 64.
    Bea S, Tort F, Pinyol M et al (2001) BMI-1 gene amplification and overexpression in hematological malignancies occur mainly in mantle cell lymphomas. Cancer Res 61:2409–2412Google Scholar
  65. 65.
    Baylin SB, Herman JG, Graff JR et al (1998) Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res 72:141–196PubMedGoogle Scholar
  66. 66.
    Kim HK, Song KS, Kim HO et al (2003) Circulating numbers of endothelial progenitor cells in patients with gastric and breast cancer. Cancer Lett 198:83–88PubMedGoogle Scholar
  67. 67.
    Reinisch C, Kandutsch S, Uthman A et al (2006) BMI-1: a protein expressed in stem cells, specialized cells and tumors of the gastrointestinal tract. Histol Histopathol 21:1143–1149PubMedGoogle Scholar
  68. 68.
    Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78:219–243PubMedGoogle Scholar
  69. 69.
    Nakamura M, Okano H, Blendy JA et al (1994) Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 13:67–81PubMedGoogle Scholar
  70. 70.
    Potten CS, Booth C, Tudor GL et al (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71:28–41PubMedGoogle Scholar
  71. 71.
    Murayama M, Okamoto R, Tsuchiya K et al (2009) Musashi-1 suppresses expression of Paneth cell-specific genes in human intestinal epithelial cells. J Gastroenterol 44:173–182PubMedGoogle Scholar
  72. 72.
    May R, Riehl TE, Hunt C et al (2008) Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells 26:630–637PubMedGoogle Scholar
  73. 73.
    Horwitz E, Prockop D, Fitzpatrick L et al (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313PubMedGoogle Scholar
  74. 74.
    Alison M, Islam S, Lim S (2009) Stem cells in liver regeneration, fibrosis and cancer: the good, the bad and the ugly. J Pathol 217:282–298PubMedGoogle Scholar
  75. 75.
    Kuwahara R, Kofman AV, Landis CS et al (2008) The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology 47:1994–2002PubMedGoogle Scholar
  76. 76.
    Tang Y, Kitisin K, Jogunoori W et al (2008) Progenitor/stem cells give rise to liver cancer due to aberrant TGF-beta and IL-6 signaling. Proc Natl Acad Sci U S A 105:2445–2450PubMedGoogle Scholar
  77. 77.
    Sell S, Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70:6–22PubMedGoogle Scholar
  78. 78.
    Berenblum I (1949) The carcinogenic action of 9, 10-dimethyl-1, 2-benzanthracene on the skin and subcutaneous tissues of the mouse, rabbit, rat and guinea pig. J Natl Cancer Inst 10:167–174PubMedGoogle Scholar
  79. 79.
    Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611PubMedGoogle Scholar
  80. 80.
    Zhu L, Gibson P, Currle DS et al (2009) Prominin 1 marks intestinal stem cells that are susceptible to neoplastic transformation. Nature 457:603–607PubMedGoogle Scholar
  81. 81.
    Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104:10158–10163PubMedGoogle Scholar
  82. 82.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedGoogle Scholar
  83. 83.
    Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323PubMedGoogle Scholar
  84. 84.
    Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedGoogle Scholar
  85. 85.
    Borovski T, Vermeulen L, Sprick MR et al (2009) One renegade cancer stem cell? Cell Cycle 8(6):803–808PubMedGoogle Scholar
  86. 86.
    Mani SA, Guo W, Liao MJ et al (2008) The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell 133:704–715PubMedGoogle Scholar
  87. 87.
    Alison MR, Islam S (2009) Attributes of adult stem cells. J Pathol 217:144–160PubMedGoogle Scholar
  88. 88.
    Vasiliou V, Nebert DW (2005) Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum Genomics 2:138–143PubMedGoogle Scholar
  89. 89.
    Dylla SJ, Beviglia L, Park IK et al (2008) Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS ONE 3:e2428PubMedGoogle Scholar
  90. 90.
    Molofsky AV, He S, Bydon M et al (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19:1432–1437PubMedGoogle Scholar
  91. 91.
    Alison MR, Murphy G, Leedham S (2008) Stem cells and cancer: a deadly mix. Cell Tissue Res 331:109–124PubMedGoogle Scholar
  92. 92.
    Mizrak D, Brittan M, Alison MR (2008) CD133: molecule of the moment. J Pathol 214:3–9PubMedGoogle Scholar
  93. 93.
    Bauer N, Fonseca AV, Florek M et al (2008) New insights into the cell biology of hematopoietic progenitors by studying prominin-1 (CD133). Cells Tissues Organs 188:127–138PubMedGoogle Scholar
  94. 94.
    Burkert J, Wright NA, Alison MR (2006) Stem cells and cancer: an intimate relationship. J Pathol 209:287–297PubMedGoogle Scholar
  95. 95.
    Shmelkov SV, Butler JM, Hooper AT et al (2008) CD133 expression is not restricted to stem cells, and both CD133+ and CD133− metastatic colon cancer cells initiate tumors. J Clin Invest 118:2111–2120PubMedGoogle Scholar
  96. 96.
    Ferlay J, Autier P, Boniol M et al (2007) Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 18:581–592PubMedGoogle Scholar
  97. 97.
    Singh SK, Clarke ID, Terasaki M et al (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828PubMedGoogle Scholar
  98. 98.
    Goodell MA (2002) Multipotential stem cells and ‘side population’ cells. Cytotherapy 4:507–508PubMedGoogle Scholar
  99. 99.
    Triel C, Vestergaard ME, Bolund L et al (2004) Side population cells in human and mouse epidermis lack stem cell characteristics. Exp Cell Res 295:79–90PubMedGoogle Scholar
  100. 100.
    Haraguchi N, Utsunomiya T, Inoue H et al (2006) Characterization of a side population of cancer cells from human gastrointestinal system. Stem Cells 24:506–513PubMedGoogle Scholar
  101. 101.
    Alison MR, Poulsom R, Brittan M et al (2006) Isolation of gut SP cells does not automatically enrich for stem cells. Gastroenterology 130:1012–1013 author reply 1013–1014PubMedGoogle Scholar
  102. 102.
    Barker N, Ridgway RA, van Es JH et al (2008) Crypt stem cells as the cells-of-origin of intestinal cancer. NatureGoogle Scholar
  103. 103.
    Preston SL, Wong WM, Chan AO et al (2003) Bottom-up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission. Cancer Res 63:3819–3825PubMedGoogle Scholar
  104. 104.
    McClanahan T, Koseoglu S, Smith K et al (2006) Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther 5:419–426PubMedCrossRefGoogle Scholar
  105. 105.
    Carney DN, Gazdar AF, Bunn PA Jr et al (1982) Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells 1:149–164PubMedGoogle Scholar
  106. 106.
    Chen YC, Hsu HS, Chen YW et al (2008) Oct-4 expression maintained cancer stem-like properties in lung cancer-derived CD133-positive cells. PLoS ONE 3:e2637PubMedGoogle Scholar
  107. 107.
    Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514PubMedGoogle Scholar
  108. 108.
    Levina V, Marrangoni AM, DeMarco R et al (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE 3:e3077PubMedGoogle Scholar
  109. 109.
    Sung JM, Cho HJ, Yi H et al (2008) Characterization of a stem cell population in lung cancer A549 cells. Biochem Biophys Res Commun 371:163–167PubMedGoogle Scholar
  110. 110.
    Ma S, Chan KW, Hu L et al (2007) Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology 132:2542–2556PubMedGoogle Scholar
  111. 111.
    Ma S, Chan KW, Lee TK et al (2008) Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res 6:1146–1153PubMedGoogle Scholar
  112. 112.
    Song W, Li H, Tao K et al (2008) Expression and clinical significance of the stem cell marker CD133 in hepatocellular carcinoma. Int J Clin Pract 62:1212–1218PubMedGoogle Scholar
  113. 113.
    Ma S, Lee TK, Zheng BJ et al (2008) CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene 27:1749–1758PubMedGoogle Scholar
  114. 114.
    Kelly PN, Dakic A, Adams JM et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337PubMedGoogle Scholar
  115. 115.
    Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349PubMedGoogle Scholar
  116. 116.
    Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598PubMedGoogle Scholar
  117. 117.
    Yoo MH, Hatfield DL (2008) The cancer stem cell theory: is it correct? Mol Cells 26:514–516PubMedGoogle Scholar
  118. 118.
    Yu Q, Su B, Liu D et al (2007) Antisense RNA-mediated suppression of Bmi-1 gene expression inhibits the proliferation of lung cancer cell line A549. Oligonucleotides 17:327–335PubMedGoogle Scholar
  119. 119.
    Grosveld GC (2009) Gamma-secretase inhibitors: Notch so bad. Nat Med 15:20–21PubMedGoogle Scholar
  120. 120.
    Subramanian J, Govindan R (2008) Small cell, big problem! Stem cells, root cause? Clin Lung Cancer 9:252–253PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Stuart A. C. McDonald
    • 1
    • 2
  • Trevor A. Graham
    • 2
  • Stefanie Schier
    • 2
  • Nicholas A. Wright
    • 2
    • 4
  • Malcolm R. Alison
    • 2
    • 3
  1. 1.Centre for Gastroenterology, Institute of Cell and Molecular ScienceBarts and the London School of Medicine and DentistryLondonUK
  2. 2.Histopathology Unit, Cancer Research UKLondon Research InstituteLondonUK
  3. 3.Centre for Diabetes, Institute of Cell and Molecular ScienceBarts and the London School of Medicine and DentistryLondonUK
  4. 4.Institute of Cell and Molecular ScienceBarts and the London School of Medicine and DentistryLondonUK

Personalised recommendations