Virchows Archiv

, 453:557 | Cite as

Estrogen receptor alpha (ERα) phospho-serine-118 is highly expressed in human uterine leiomyomas compared to matched myometrium

  • Tonia L. Hermon
  • Alicia B. Moore
  • Linda Yu
  • Grace E. Kissling
  • Frank J. Castora
  • Darlene Dixon
Original Article


It is thought that the growth of uterine leiomyomas may be mediated by the interaction of estrogen receptor alpha (ERα) and growth factor pathways and that phosphorylation of ERα at serine 118 (ERα-phospho-Ser118) is important in this interaction. In this study, immunoblotting and immunohistochemistry were used to investigate the expression of ERα-phospho-Ser118, phosphorylated p44/42 mitogen-activated protein kinase (phospho-p44/42 MAPK), and proliferating cell nuclear antigen (PCNA) in human leiomyoma and myometrial tissues during the proliferative and secretory phases of the menstrual cycle. We found that tumors taken from the proliferative phase expressed significantly higher levels of ERα-phospho-Ser118, phospho-p44/42 MAPK, and PCNA compared to patient-matched myometria and had significantly higher ERα-phospho-Ser118 and PCNA expression compared to secretory phase tumors. Also, enhanced colocalization and association of phospho-p44/42 MAPK and ERα-phospho-Ser118 were observed in proliferative phase tumors by confocal microscopy and immunoprecipitation, respectively. These data suggest that ERα-phospho-Ser118 may be important in leiomyoma growth and is possibly phosphorylated by phospho-p44/42 MAPK.


Uterine leiomyoma Estrogen receptor alpha phosphorylated serine 118 Phosphorylated mitogen-activated protein kinase 



The authors would like to thank Norris Flagler, Elizabeth Ney, Paul Cacioppo, and C. Jeffrey Tucker for their technical assistance with imaging. This research was supported, in part, by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences.

Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Barbarisi A, Petillo O, Di Lieto A, Melone MA, Margarucci S, Cannas M, Peluso G (2001) 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: evidence for a stimulation of protein kinase-dependent pathway. J Cell Physiol 186(3):414–424PubMedCrossRefGoogle Scholar
  2. 2.
    Beinfeld MT, Bosch JL, Isaacson KB, Gazelle GS (2004) Cost-effectiveness of uterine artery embolization and hysterectomy for uterine fibroids. Radiology 230(1):207–213PubMedCrossRefGoogle Scholar
  3. 3.
    Bourlev V, Pavlovitch S, Stygar D, Volkov N, Lindblom B, Olovsson M (2003) Different proliferative and apoptotic activity in peripheral versus central parts of human uterine leiomyomas. Gynecol Obstet Invest 55(4):199–204PubMedCrossRefGoogle Scholar
  4. 4.
    Bunone G, Briand PA, Miksicek RJ, Picard D (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. Embo J 15(9):2174–2183PubMedGoogle Scholar
  5. 5.
    Buttram VC Jr (1986) Uterine leiomyomata—aetiology, symptomatology and management. Prog Clin Biol Res 225:275–296PubMedGoogle Scholar
  6. 6.
    Chegini N, Kornberg L (2003) Gonadotropin releasing hormone analogue therapy alters signal transduction pathways involving mitogen-activated protein and focal adhesion kinases in leiomyoma. J Soc Gynecol Investig 10(1):21–26PubMedCrossRefGoogle Scholar
  7. 7.
    Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, Taylor J, Epstein RJ, Fuller-Pace FV, Egly JM, Coombes RC, Ali S (2002) Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 21(32):4921–4931PubMedCrossRefGoogle Scholar
  8. 8.
    Chwalisz K, DeManno D, Garg R, Larsen L, Mattia-Goldberg C, Stickler T (2004) Therapeutic potential for the selective progesterone receptor modulator asoprisnil in the treatment of leiomyomata. Semin Reprod Med 22(2):113–119PubMedCrossRefGoogle Scholar
  9. 9.
    Chwalisz K, Perez MC, Demanno D, Winkel C, Schubert G, Elger W (2005) Selective progesterone receptor modulator development and use in the treatment of leiomyomata and endometriosis. Endocr Rev 26(3):423–438PubMedCrossRefGoogle Scholar
  10. 10.
    Cook JD, Walker CL (2004) Treatment strategies for uterine leiomyoma: the role of hormonal modulation. Semin Reprod Med 22(2):105–111PubMedCrossRefGoogle Scholar
  11. 11.
    Denton RR, Koszewski NJ, Notides AC (1992) Estrogen receptor phosphorylation. Hormonal dependence and consequence on specific DNA binding. J Biol Chem 267(11):7263–7268PubMedGoogle Scholar
  12. 12.
    Detre S, Saclani Jotti G, Dowsett M (1995) A “quickscore” method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas. J Clin Pathol 48(9):876–878PubMedCrossRefGoogle Scholar
  13. 13.
    Dixon D, Flake GP, Moore AB, He H, Haseman JK, Risinger JI, Lancaster JM, Berchuck A, Barrett JC, Robboy SJ (2002) Cell proliferation and apoptosis in human uterine leiomyomas and myometria. Virchows Arch 441(1):53–62PubMedCrossRefGoogle Scholar
  14. 14.
    Emembolu JO (1987) Uterine fibromyomata: presentation and management in northern Nigeria. Int J Gynaecol Obstet 25(5):413–416PubMedCrossRefGoogle Scholar
  15. 15.
    Farquhar CM, Steiner CA, Sozen I, Arici A (2002) Hysterectomy rates in the United States 1990–1997. Obstet Gynecol 99(2):229–234PubMedCrossRefGoogle Scholar
  16. 16.
    Hodges LC, Houston KD, Hunter DS, Fuchs-Young R, Zhang Z, Wineker RC, Walker CL (2002) Transdominant suppression of estrogen receptor signaling by progesterone receptor ligands in uterine leiomyoma cells. Mol Cell Endocrinol 196(1–2):11–20PubMedCrossRefGoogle Scholar
  17. 17.
    Jasonni VM, La Marca A, Santini D (2005) Progestin effects on epidermal growth factor receptor (EGFR) endometrial expression in normal and hyperplastic endometrium. Int J Gynaecol Obstet 89(3):297–298PubMedCrossRefGoogle Scholar
  18. 18.
    Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (1995) Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270(5241):1491–1494PubMedCrossRefGoogle Scholar
  19. 19.
    Katzenellenbogen BS (2000) Mechanisms of action and cross-talk between estrogen receptor and progesterone receptor pathways. J Soc Gynecol Investig 7(1 Suppl):S33–S37PubMedCrossRefGoogle Scholar
  20. 20.
    Kayisli UA, Berkkanoglu M, Kizilay G, Senturk L, Arici A (2007) Expression of proliferative and preapoptotic molecules in human myometrium and leiomyoma throughout the menstrual cycle. Reprod Sci 14(7):678–686PubMedCrossRefGoogle Scholar
  21. 21.
    Kim MR, Park DW, Lee JH, Choi DS, Hwang KJ, Ryu HS, Min CK (2005) Progesterone-dependent release of transforming growth factor-beta1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol Hum Reprod 11(11):801–808PubMedCrossRefGoogle Scholar
  22. 22.
    Kovacs KA, Oszter A, Gocze PM, Kornyei JL, Szabo I (2001) Comparative analysis of cyclin D1 and oestrogen receptor (alpha and beta) levels in human leiomyoma and adjacent myometrium. Mol Hum Reprod 7(11):1085–1091PubMedCrossRefGoogle Scholar
  23. 23.
    Kraus WL, Katzenellenbogen BS (1993) Regulation of progesterone receptor gene expression and growth in the rat uterus: modulation of estrogen actions by progesterone and sex steroid hormone antagonists. Endocrinology 132(6):2371–2379PubMedCrossRefGoogle Scholar
  24. 24.
    Kraus WL, Weis KE, Katzenellenbogen BS (1995) Inhibitory cross-talk between steroid hormone receptors: differential targeting of estrogen receptor in the repression of its transcriptional activity by agonist- and antagonist-occupied progestin receptors. Mol Cell Biol 15(4):1847–1857PubMedGoogle Scholar
  25. 25.
    Lannigan DA (2003) Estrogen receptor phosphorylation. Steroids 68(1):1–9PubMedCrossRefGoogle Scholar
  26. 26.
    Marsh EE, Bulun SE (2006) Steroid hormones and leiomyomas. Obstet Gynecol Clin North Am 33(1):59–67PubMedCrossRefGoogle Scholar
  27. 27.
    Maruo T, Ohara N, Matsuo H, Xu Q, Chen W, Sitruk-Ware R, Johansson ED (2007) Effects of levonorgestrel-releasing IUS and progesterone receptor modulator PRM CDB-2914 on uterine leiomyomas. Contraception 75(6 Suppl):S99–103PubMedCrossRefGoogle Scholar
  28. 28.
    Maruo T, Ohara N, Wang J, Matsuo H (2004) Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update 10(3):207–220PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuzaki S, Canis M, Pouly JL, Botchorishvili R, Dechelotte PJ, Mage G (2007) Both GnRH agonist and continuous oral progestin treatments reduce the expression of the tyrosine kinase receptor B and mu-opioid receptor in deep infiltrating endometriosis. Hum Reprod 22(1):124–128PubMedCrossRefGoogle Scholar
  30. 30.
    Parazzini F (2006) Risk factors for clinically diagnosed uterine fibroids in women around menopause. Maturitas 55(2):174–179PubMedCrossRefGoogle Scholar
  31. 31.
    Rein M (1992) Biology of uterine myomas and myometrium in vitro. In: Barbieri RL (ed) Seminars in reproductive endocrinology. Thieme, New York, pp 310–319Google Scholar
  32. 32.
    Reis FM, Lhullier C, Edelweiss MI, Spritzer PM (2005) In vivo assessment of the regulation of transforming growth factor alpha, epidermal growth factor (EGF), and EGF receptor in the human endometrium by medroxyprogesterone acetate. J Assist Reprod Genet 22(1):19–24PubMedCrossRefGoogle Scholar
  33. 33.
    Sato F, Mori M, Nishi M, Kudo R, Miyake H (2002) Familial aggregation of uterine myomas in Japanese women. J Epidemiol 12(3):249–253PubMedGoogle Scholar
  34. 34.
    Shimomura Y, Matsuo H, Samoto T, Maruo T (1998) Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab 83(6):2192–2198PubMedCrossRefGoogle Scholar
  35. 35.
    Sozen I, Arici A (2002) Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril 78(1):1–12PubMedCrossRefGoogle Scholar
  36. 36.
    Stewart EA, Friedman AJ, Peck K, Nowak RA (1994) Relative overexpression of collagen type I and collagen type III messenger ribonucleic acids by uterine leiomyomas during the proliferative phase of the menstrual cycle. J Clin Endocrinol Metab 79(3):900–906PubMedCrossRefGoogle Scholar
  37. 37.
    Swartz CD, Afshari CA, Yu L, Hall KE, Dixon D (2005) Estrogen-induced changes in IGF-I, Myb family and MAP kinase pathway genes in human uterine leiomyoma and normal uterine smooth muscle cell lines. Mol Hum Reprod 11(6):441–450PubMedCrossRefGoogle Scholar
  38. 38.
    Vereide AB, Kaino T, Sager G, Arnes M, Orbo A (2006) Effect of levonorgestrel IUD and oral medroxyprogesterone acetate on glandular and stromal progesterone receptors (PRA and PRB), and estrogen receptors (ER-alpha and ER-beta) in human endometrial hyperplasia. Gynecol Oncol 101(2):214–223PubMedCrossRefGoogle Scholar
  39. 39.
    Vollenhoven B (1998) Introduction: the epidemiology of uterine leiomyomas. Baillieres Clin Obstet Gynaecol 12(2):169–176PubMedCrossRefGoogle Scholar
  40. 40.
    Wang J, Ohara N, Wang Z, Chen W, Morikawa A, Sasaki H, DeManno DA, Chwalisz K, Maruo T (2006) A novel selective progesterone receptor modulator asoprisnil (J867) down-regulates the expression of EGF, IGF-I, TGFbeta3 and their receptors in cultured uterine leiomyoma cells. Hum Reprod 21(7):1869–1877PubMedCrossRefGoogle Scholar
  41. 41.
    Washburn T, Hocutt A, Brautigan DL, Korach KS (1991) Uterine estrogen receptor in vivo: phosphorylation of nuclear specific forms on serine residues. Mol Endocrinol 5(2):235–242PubMedCrossRefGoogle Scholar
  42. 42.
    Yamada T, Nakago S, Kurachi O, Wang J, Takekida S, Matsuo H, Maruo T (2004) Progesterone down-regulates insulin-like growth factor-I expression in cultured human uterine leiomyoma cells. Hum Reprod 19(4):815–821PubMedCrossRefGoogle Scholar
  43. 43.
    Zaslawski R, Surowiak P, Dziegiel P, Pretnik L, Zabel M (2001) Analysis of the expression of estrogen and progesterone receptors, and of PCNA and Ki67 proliferation antigens, in uterine myomata cells in relation to the phase of the menstrual cycle. Med Sci Monit 7(5):908–913PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tonia L. Hermon
    • 1
    • 3
  • Alicia B. Moore
    • 1
  • Linda Yu
    • 1
  • Grace E. Kissling
    • 2
  • Frank J. Castora
    • 3
  • Darlene Dixon
    • 1
  1. 1.Cellular and Molecular Pathology BranchNational Institute of Environmental Health Sciences (NIEHS), National Toxicology Program (NTP), National Institutes of Health (NIH), Department of Health and Human Services (DHHS)Research Triangle ParkUSA
  2. 2.Biostatistics BranchNational Institute of Environmental Health Sciences (NIEHS), National Toxicology Program (NTP), National Institutes of Health (NIH), Department of Health and Human Services (DHHS)Research Triangle ParkUSA
  3. 3.Department of Physiological Sciences, Division of BiochemistryEastern Virginia Medical SchoolNorfolkUSA

Personalised recommendations