Virchows Archiv

, Volume 453, Issue 5, pp 449–455 | Cite as

Activated Akt as an indicator of prognosis in gastric cancer

  • Caterina Cinti
  • Carla Vindigni
  • Alessandra Zamparelli
  • Dario La Sala
  • Maria Carmela Epistolato
  • Daniele Marrelli
  • Gabriele Cevenini
  • Piero Tosi
Original Article


The immunohistochemical expression of phosphorylated (activated) Akt (pAkt) in 50 advanced gastric carcinomas has been analyzed and the results correlated with age, sex, location in the stomach, histotype, stage, survival, mitotic and apoptotic index, some cell cycle regulators (cyclin D1, cyclin E, p34/cdc2, p27/kip1), and cell proliferation. There was a statistically significant direct correlation between pAkt expression (both cytoplasmatic and nuclear) and depth of infiltration of the tumor, number of infiltrated lymph nodes and p34/cdc2 expression, and between prevalently nuclear pAkt and cyclin D1 and cyclin E. Conversely, there was a significant inverse correlation between nuclear pAkt and apoptotic index and between cytoplasmatic and nuclear pAkt and patient survival. No correlation was found between pAkt and sex, age, tumor location, histotype, mitotic index, and cell proliferation. These findings suggest that pAkt may be considered an indicator of tumor progression and patient survival in gastric cancer.


Gastric cancer Akt pAkt Tumor progression Survival 


Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Axon A (2002) Review article: gastric cancer and Helicobacter pylori Alimet. Pharmacol Ther 16(4):83–88Google Scholar
  2. 2.
    Saegusa M, Takano Y, Kamata Y et al (1996) Bcl-2 expression and allelic loss of the p53 gene in gastric carcinomas. J Cancer Res Clin Oncol 122:427–432PubMedCrossRefGoogle Scholar
  3. 3.
    Endoh Y, Sakata K, Tamura G et al (2000) Cellular phenotypes of differentiated-type adenocarcinomas and precancerous lesions of the stomach are dependent on the genetic pathways. J Pathol 191:257–263PubMedCrossRefGoogle Scholar
  4. 4.
    Fresno Vara JA, Casado E, de Castro J et al (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204PubMedCrossRefGoogle Scholar
  5. 5.
    Chang F, Lee JT, Navolanic PM et al (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17:590–603PubMedCrossRefGoogle Scholar
  6. 6.
    Wang R, Brattain MG (2006) AKT can be activated in the nucleus. Cell Signaling 18:1722–1731CrossRefGoogle Scholar
  7. 7.
    Roy HK, Olusola BF, Clemens DL et al (2002) AKT proto-oncogene overexpression is an early event during sporadic colon carcinogenesis. Carcinogenesis 23:201–205PubMedCrossRefGoogle Scholar
  8. 8.
    Altomare DA, Tanno S, De Rienzo A et al (2003) Frequent activation of AKT2 kinase in human pancreatic carcinomas. J Cell Biochem 88:470–476Google Scholar
  9. 9.
    Alkan S, Izban KF (2002) Immunohistochemical localization of phosphorylated AKT in multiple myeloma. Blood 99:2278–2279PubMedCrossRefGoogle Scholar
  10. 10.
    Yamamoto S, Tomita Y, Hoshida Y et al (2004) Prognostic significance of activated Akt expression in pancreatic ductal adenocarcinoma. Clin Cancer Res 10:2846–2850PubMedCrossRefGoogle Scholar
  11. 11.
    Ermoian RP, Furniss CS, Lamborn KR et al (2002) Dysregulation of PTEN and protein kinase B is associated with glioma histology and patient survival. Clin Cancer Res 8:1100–1106PubMedGoogle Scholar
  12. 12.
    Clark AS, West K, Streicher S et al (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1:707–717PubMedGoogle Scholar
  13. 13.
    Brognard J, Clark AS, Ni Y et al (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61:3986–3997PubMedGoogle Scholar
  14. 14.
    Tanno S, Yanagawa N, Habiro A et al (2004) Serine/threonine kinase AKT is frequently activated in human bile duct cancer and is associated with increased radioresistance. Cancer Res 64:3486–3490PubMedCrossRefGoogle Scholar
  15. 15.
    Oki E, Baba H, Tokunaga E et al (2005) Aky phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer 117:376–380PubMedCrossRefGoogle Scholar
  16. 16.
    Bellacosa A, de Feo D, Godwin AK et al (1995) Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 64:280–285PubMedCrossRefGoogle Scholar
  17. 17.
    Cheng JQ, Ruggeri B, Klein WM et al (1996) Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci USA 93(8):3636–3641PubMedCrossRefGoogle Scholar
  18. 18.
    Staal SP (1987) Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 84:5034–5037PubMedCrossRefGoogle Scholar
  19. 19.
    Rusnak DW, Lackey K, Affleck K et al (2001) The effects of the novel, reversible epidermal growth factor receptor/ErbB-2 tyrosine kinase inhibitor, GW2016, on the growth of human normal and tumor-derived cell lines in vitro and in vivo. Mol Cancer Ther 1:85–94PubMedGoogle Scholar
  20. 20.
    Diehl JA, Cheng M, Roussel MF et al (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Gen Dev 12:3499–3511CrossRefGoogle Scholar
  21. 21.
    Liang J, Zubovitz J, Petrocelli T et al (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8:1153–1160PubMedCrossRefGoogle Scholar
  22. 22.
    Philipp-Staheli J, Payne SR, Kemp CJ (2001) p27(Kip1): regulation and function of a haplo-insufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148–168PubMedCrossRefGoogle Scholar
  23. 23.
    Pagano M, Tam SW, Theodoras AM et al (1995) Role of the ubiquitin–proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269:682–685PubMedCrossRefGoogle Scholar
  24. 24.
    Fero M, Randel E, Gurley KE et al (1998) The murine gene p27Kip1 is haplo-insufficient for tumor suppression. Nature 396:177–180PubMedCrossRefGoogle Scholar
  25. 25.
    Besson A, Gurian-West M, Schmidt A et al (2004) p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev 18:862–876PubMedCrossRefGoogle Scholar
  26. 26.
    Nakayama K, Nagahama H, Minamishima YA et al (2004) Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 6:661–672PubMedCrossRefGoogle Scholar
  27. 27.
    Liang J, Slingerland JM (2003) Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2:339–345PubMedGoogle Scholar
  28. 28.
    Shin I, Yakes FM, Rojo F et al (2002) PKB/Akt mediates cell-cycle progression by phosphorylation of p27 (kip1) at threonine 157 and modulation of its cellular localization. Nat Med 8:1145–1152PubMedCrossRefGoogle Scholar
  29. 29.
    Viglietto G, Motti ML, Bruni P et al (2002) Cytoplasmic relocalization and inhibition of the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated phosphorylation in breast cancer. Nat Med 8:1136–1144PubMedCrossRefGoogle Scholar
  30. 30.
    Greene FL, Page DL, Fleming ID et al (eds) (2002) American Joint Committee on Cancer Staging Manual, 6th ed. Springer, New YorkGoogle Scholar
  31. 31.
    Lauren T (1965) The two histologic main types of gastric carcinoma: diffuse and so called intestinal type. Acta Pathol Microbiol 64:31–49Google Scholar
  32. 32.
    Vindigni C, Miracco C, Spina D et al (1997) Cell proliferation, cell death and angiogenesis in early and advanced gastric cancer of intestinal type. Int J Cancer 74:637–641PubMedCrossRefGoogle Scholar
  33. 33.
    Cicenas J (2008) The potential role of Akt phosphorylation in humane cancers. Int J Biol Markers 23:1–9PubMedGoogle Scholar
  34. 34.
    Itoh N, Semba S, Masafumi I et al (2002) Phosphorylation of Akt/PKB is required for suppression of cancer cell apoptosis and tumor progression in human colorectal carcinoma. Cancer 94:3127–3134PubMedCrossRefGoogle Scholar
  35. 35.
    Liao Y, Grobholz R, Abel U et al (2003) Increase of AKT/PKB expression correlates with Gleason pattern in human prostate cancer. In J Cancer 107:676–680Google Scholar
  36. 36.
    Okudela K, Hayashi H, Ito T et al (2004) K-ras gene mutation enhances motility of immortalized airway cells and lung adenocarcinoma cells via Akt activation: possible contribution to non-invasive expansion of lung adenocarcinoma. Am J Pathol 164:91–100PubMedGoogle Scholar
  37. 37.
    Vasko V, Saji M, Hardy E et al (2004) Akt activation and localisation correlate with tumour invasion and oncogene expression in thyroid cancer. J Med Genet 41:161–170PubMedCrossRefGoogle Scholar
  38. 38.
    Grille SJ, Bellicosa A, Upson J et al (2003) The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res 63:2172–2178PubMedGoogle Scholar
  39. 39.
    Schmitz KJ, Otterbach F, Callies R et al (2004) Prognostic relevance of activated Akt kinase in node-negative breast cancer: a clinicopathological study of 99 cases. Mod Pathol 17:15–21PubMedCrossRefGoogle Scholar
  40. 40.
    Horiguchi A, Oya M, Uchida A et al (2003) Elevated Akt activation and its impact on clinicopathological features of renal cell carcinoma. J Urol 169:710–713PubMedCrossRefGoogle Scholar
  41. 41.
    Murakami D, Tsujitani S, Osaki T et al (2007) Expression of phosphorylated Akt (pAkt) in gastric carcinoma predicts prognosis and efficacy of chemotherapy. Gastric Cancer 10:45–51PubMedCrossRefGoogle Scholar
  42. 42.
    Han Z, Wu K, Shen H et al (2008) Akt1/protein kinase Bα is involved in gastric cancer progression and cell proliferation. Dig Dis Sci 53:1801–1810PubMedCrossRefGoogle Scholar
  43. 43.
    Lee BL, Kim WH, Jung J, Cho SJ et al (2008) A hypoxia-independent up-regulation of hypoxia-inducible factor-1 by AKT contributes to angiogenesis in human gastric cancer. Carcinogenesis 29:44–51PubMedCrossRefGoogle Scholar
  44. 44.
    Yu HG, Ai YW, Yu LL et al (2008) Phosphoinositide 3-kinase/Akt pathway plays an important role in chemoresistance of gastric cancer cells against etoposide and doxorubicin induced cell death. Int J Cancer 122:433–443PubMedCrossRefGoogle Scholar
  45. 45.
    Kobayashi I, Semba S, Matsuda Y et al (2006) Significance of Akt phosphorylation on tumor growth and Vascular Endothelial Growth Factor expression in human gastric carcinoma. Pathobiology 73:8–17PubMedCrossRefGoogle Scholar
  46. 46.
    Cardone MH, Roy N, Stennicke HR et al (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321PubMedCrossRefGoogle Scholar
  47. 47.
    Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868PubMedCrossRefGoogle Scholar
  48. 48.
    Takano Y, Kato Y, Masuda M et al (1999) Cyclin D2, but not cyclin D1, overexpression closely correlates with gastric cancer progression and prognosis. J Pathol 189:194–200PubMedCrossRefGoogle Scholar
  49. 49.
    Aoyagi K, Koufuji K, Yano S et al (2000) Immunohistochemical study on the expression of cyclin D1 and E in gastric cancer. Kurume Med J 47:199–203PubMedGoogle Scholar
  50. 50.
    Chetty R, Sitti CW (2003) Cyclin E immunoexpression in gastric cancer does not correlate with clinicopathological parameters. Histopathology 42:66–69PubMedCrossRefGoogle Scholar
  51. 51.
    Jiaqing L, Hokita S, Xiangming C et al (1998) Role of cyclin E and p53 expression in progression of early gastric cancer. Gastric Cancer 1:160–165PubMedCrossRefGoogle Scholar
  52. 52.
    Bani-Hani KE, Almasri NM, Khader YS et al (2005) Combined evaluation of expressions of cyclin E and p53 proteins as prognostic factors for patients with gastric cancer. Clinical Cancer Research 11:1447–1453PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Caterina Cinti
    • 1
  • Carla Vindigni
    • 2
  • Alessandra Zamparelli
    • 3
  • Dario La Sala
    • 1
  • Maria Carmela Epistolato
    • 2
  • Daniele Marrelli
    • 4
  • Gabriele Cevenini
    • 5
  • Piero Tosi
    • 2
  1. 1.Institute of Clinical PhysiologyConsiglio Nazionale delle Ricerche, Siena UnitSienaItaly
  2. 2.Department of Human Pathology and Oncology, Division of Pathological Anatomy and HistopathologyUniversity of Siena, ItalySienaItaly
  3. 3.Institute of Molecular GeneticsConsiglio Nazionale delle Ricerche, c/o IORBolognaItaly
  4. 4.Department of Human Pathology and Oncology, Division of Surgical OncologyUniversity of SienaSienaItaly
  5. 5.Department of Surgery and BioengineeringUniversity of SienaSienaItaly

Personalised recommendations