Advertisement

Virchows Archiv

, 453:69 | Cite as

Amalgamation of Chlamydia pneumoniae inclusions with lipid droplets in foam cells in human atherosclerotic plaque

  • Yuri V. BobryshevEmail author
  • Murray C. Killingsworth
  • Dihn Tran
  • Reginald Lord
Original Article

Abstract

Chlamydia pneumoniae (Chlamydophila pneumoniae) infect macrophages and accelerates foam cell formation in in vitro experiments, but whether this might occur in human atherosclerosis is unknown. In the present study, we examined 17 carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. Electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae in the cytoplasm of macrophage foam cells. The volume of the cytoplasm that was free from vacuoles and lipid droplets in C. pneumoniae-infected foam cells was dramatically reduced, and a phenomenon of the amalgamation of C. pneumoniae inclusions with lipid droplets was detected. Double immunohistochemistry showed that C. pneumoniae-infected foam cells contained a large number of oxidized low-density lipoproteins. The observations provide support to the hypothesis that C. pneumoniae could affect foam cell formation in human atherosclerosis.

Keywords

Atherosclerosis Arteries Macrophages Chlamydia pneumoniae 

Notes

Acknowledgements

The research was supported by the Vascular Fund, St. Vincent’s Hospital, Sydney and by School of Medicine, University of Western Sydney.

The experiments comply with the current laws of Australia.

Conflict of interest statement

We have no commercial associations (i.e. pharmaceutical stock ownership, consultancy, advisory board membership, or relevant patents) that might pose a conflict of interest. We declare that we have no conflict of interest.

References

  1. 1.
    Belland RJ, Ouellette SP, Gieffers J, Byrne GI (2004) Chlamydia pneumoniae and atherosclerosis. Cell Microbiol 6:117–127PubMedCrossRefGoogle Scholar
  2. 2.
    Bishara J, Pitlik S, Kazakov A, Sahar G, Haddad M, Vojdani A, Rosenberg S, Samra Z (2003) Failure to detect Chlamydia pneumoniae by cell culture and polymerase chain reaction in major arteries of 93 patients with atherosclerosis. Eur J Clin Microbiol Infect Dis 22:300–302PubMedGoogle Scholar
  3. 3.
    Blessing E, Kuo CC, Lin TM, Campbell LA, Bea F, Chesebro B, Rosenfeld ME (2002) Foam cell formation inhibits growth of Chlamydia pneumoniae but does not attenuate Chlamydia pneumoniae-induced secretion of proinflammatory cytokines. Circulation 105:1976–1982PubMedCrossRefGoogle Scholar
  4. 4.
    Bobryshev YV (2005) Intracellular localization of oxidized low-density lipoproteins in atherosclerotic plaque cells revealed by electron microscopy combined with laser capture microdissection. J Histochem Cytochem 53:793–797PubMedCrossRefGoogle Scholar
  5. 5.
    Bobryshev YV, Lord RSA (1996) Langhans cells of human arterial intima: uniform by stellate appearance but different by nature. Tissue Cell 28:177–194PubMedCrossRefGoogle Scholar
  6. 6.
    Bobryshev YV, Lord RSA (1998) Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc Res 37:799–810PubMedCrossRefGoogle Scholar
  7. 7.
    Bobryshev YV, Lord RSA, Watanabe T, Ikezawa T (1998) The cell adhesion molecule E-cadherin is widely expressed in human atherosclerotic lesions. Cardiovasc Res 40:191–205PubMedCrossRefGoogle Scholar
  8. 8.
    Bobryshev YV, Cao W, Phoon MC, Tran D, Chow VT, Lord RS, Lu J (2004) Detection of Chlamydophila pneumoniae in dendritic cells in atherosclerotic lesions. Atherosclerosis 173:185–195PubMedCrossRefGoogle Scholar
  9. 9.
    Boman J, Gaydos CA (2000) Polymerase chain reaction detection of Chlamydia pneumoniae in circulating white blood cells. J Infect Dis 181:S452–S454PubMedCrossRefGoogle Scholar
  10. 10.
    Campbell LA, Kuo CC (2004) Chlamydia pneumoniae—an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2:23–32PubMedCrossRefGoogle Scholar
  11. 11.
    Campbell LA, Kuo CC, Grayston JT (1998) Chlamydia pneumoniae and cardiovascular disease. Emerg Infect Dis 4:571–579PubMedGoogle Scholar
  12. 12.
    Campbell LA, Perez Melgosa M, Hamilton DJ, Kuo CC, Grayston JT (1992) Detection of Chlamydia pneumoniae by polymerase chain reaction. J Clin Microbiol 30:434–439PubMedGoogle Scholar
  13. 13.
    Cao F, Castrillo A, Tontonoz P, Re F, Byrne GI (2007) Chlamydia pneumoniae-induced macrophage foam cell formation is mediated by Toll-like receptor 2. Infect Immun 75:753–759PubMedCrossRefGoogle Scholar
  14. 14.
    Cirino F, Webley WC, West C, Croteau NL, Andrzejewski C Jr, Stuart ES (2006) Detection of Chlamydia in the peripheral blood cells of normal donors using in vitro culture, immunofluorescence microscopy and flow cytometry techniques. BMC Infect Dis 6:23PubMedCrossRefGoogle Scholar
  15. 15.
    Da Costa CU, Wantia N, Kirschning CJ, Busch DH, Rodriguez N, Wagner H, Miethke T (2004) Heat shock protein 60 from Chlamydia pneumoniae elicits an unusual set of inflammatory responses via Toll-like receptor 2 and 4 in vivo. Eur J Immunol 34:2874–2884PubMedCrossRefGoogle Scholar
  16. 16.
    de Villiers WJ, Smart EJ (1999) Macrophage scavenger receptors and foam cell formation. J Leukoc Biol 66:740–746PubMedGoogle Scholar
  17. 17.
    Dowell SF, Peeling RW, Boman J, Carlone GM, Fields BS, Guarner J, Hammerschlag MR, Jackson LA, Kuo CC, Maass M, Messmer TO, Talkington DF, Tondella ML, Zaki SR (2001) Standardizing Chlamydia pneumoniae assays: recommendations from the Centers for Disease Control and Prevention (USA) and the Laboratory Centre for Disease Control (Canada). Clin Infect Dis 33:492–503PubMedCrossRefGoogle Scholar
  18. 18.
    Edfeldt K, Swedenborg J, Hansson GK, Yan ZQ (2002) Expression of Toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation. Circulation 105:1158–1161PubMedGoogle Scholar
  19. 19.
    Fryer RH, Schwobe EP, Woods ML, Rodgers GM (1997) Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. J Investig Med 45:168–174PubMedGoogle Scholar
  20. 20.
    Gaydos CA, Summersgill JT, Sahney NN, Ramirez JA, Quinn TC (1996) Replication of Chlamydia pneumoniae in vitro in human macrophages, endothelial cells, and aortic artery smooth muscle cells. Infect Immun 64:1614–1620PubMedGoogle Scholar
  21. 21.
    Gieffers J, Füllgraf H, Jahn J, Klinger M, Dalhoff K, Katus HA, Solbach W, Maass M (2001) Chlamydia pneumoniae infection in circulating human monocytes is refractory to antibiotic treatment. Circulation 103:351–356PubMedGoogle Scholar
  22. 22.
    Glass CK, Witztum JL (2001) Atherosclerosis. The road ahead. Cell 104:503–516PubMedCrossRefGoogle Scholar
  23. 23.
    Godzik KL, O'Brien ER, Wang SK, Kuo CC (1995) In vitro susceptibility of human vascular wall cells to infection with Chlamydia pneumoniae. J Clin Microbiol 33:2411–2414PubMedGoogle Scholar
  24. 24.
    Grant K, Jerome WG (2002) Laser capture microdissection as an aid to ultrastructural analysis. Microsc Microanal 8:170–175PubMedCrossRefGoogle Scholar
  25. 25.
    Heinemann M, Susa M, Simnacher U, Marre R, Essig A (1996) Growth of Chlamydia pneumoniae induces cytokine production and expression of CD14 in a human monocytic cell line. Infect Immun 64:4872–4875PubMedGoogle Scholar
  26. 26.
    Hortovanyi E, Illyes G, Glasz T, Kadar A (2002) Chlamydia pneumoniae in different coronary artery segments in the young. Pathol Res Pract 198:19–23PubMedCrossRefGoogle Scholar
  27. 27.
    Hsu SM, Raine L, Fanger H (1981) Use of avidin–biotin–peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. J Histochem Cytochem 29:577–580PubMedGoogle Scholar
  28. 28.
    Jackson LA, Campbell LA, Kuo CC, Rodriguez DI, Lee A, Grayston JT (1997) Isolation of Chlamydia pneumoniae from carotid endarterectomy specimen. J Infect Dis 176:292–295PubMedGoogle Scholar
  29. 29.
    Kalayoglu MV, Byrne GI (1998) A Chlamydia pneumoniae component that induces macrophage foam cell formation is chlamydial lipopolysaccharide. Infect Immun 66:5067–5072PubMedGoogle Scholar
  30. 30.
    Kalayoglu MV, Byrne GI (1998) Induction of macrophage foam cell formation by Chlamydia pneumoniae. J Infect Dis 177:725–729PubMedGoogle Scholar
  31. 31.
    Kalayoglu MV, Libby P, Byrne GI (2002) Chlamydia pneumoniae as an emerging risk factor in cardiovascular disease. JAMA 288:2724–2731PubMedCrossRefGoogle Scholar
  32. 32.
    Kalayoglu MV, Hoerneman B, LaVerda D, Morrison SG, Morrison RP, Byrne GI (1999) Cellular oxidation of low-density lipoprotein by Chlamydia pneumoniae. J Infect Dis 180:780–790PubMedCrossRefGoogle Scholar
  33. 33.
    Kalayoglu MV, Indrawati, Morrison RP, Morrison SG, Yuan Y, Byrne GI (2000) Chlamydial virulence determinants in atherogenesis: the role of chlamydial lipopolysaccharide and heat shock protein 60 in macrophage-lipoprotein interactions. J Infect Dis 181(Suppl 3):S483–S489PubMedCrossRefGoogle Scholar
  34. 34.
    Keita M, Magy L, Richard L, Piaser M, Vallat JM (2002) LR white post-embedding colloidal gold method to immunostain MBP, P0, NF and S100 in glutaraldehyde-fixed peripheral nerve tissue. J Peripher Nerv Syst 7:128–133PubMedCrossRefGoogle Scholar
  35. 35.
    Krüll M, Maass M, Suttorp N, Rupp J (2005) Chlamydophila pneumoniae. Mechanisms of target cell infection and activation. Thromb Haemost 94:319–326PubMedGoogle Scholar
  36. 36.
    Kutlin A, Flegg C, Stenzel D, Reznik T, Roblin PM, Mathews S, Timms P, Hammerschlag MR (2001) Ultrastructural study of Chlamydia pneumoniae in a continuous-infection model. J Clin Microbiol 39:3721–3723PubMedCrossRefGoogle Scholar
  37. 37.
    Kuo CC, Gown AM, Benditt EP, Grayston JT (1993) Detection of Chlamydia pneumoniae in aortic lesions of atherosclerosis by immunocytochemical stain. Arterioscler Thromb 13:1501–1504PubMedGoogle Scholar
  38. 38.
    Kuo CC, Shor A, Campbell LA, Fukushi H, Patton DL, Grayston JT (1993) Demonstration of Chlamydia pneumoniae in atherosclerotic lesions of coronary arteries. J Infect Dis 167:841–849PubMedGoogle Scholar
  39. 39.
    Lang PD, Insull W Jr (1970) Lipid droplets in atherosclerotic fatty streaks of human aorta. J Clin Invest 49:1479–1488PubMedCrossRefGoogle Scholar
  40. 40.
    Lin TM, Campbell LA, Rosenfeld ME, Kuo CC (2000) Monocyte-endothelial cell coculture enhances infection of endothelial cells with Chlamydia pneumoniae. J Infect Dis 181:1096–1100PubMedCrossRefGoogle Scholar
  41. 41.
    Liu L, Hu H, Ji H, Murdin AD, Pierce GN, Zhong G (2000) Chlamydia pneumoniae infection significantly exacerbates aortic atherosclerosis in an LDLR−/− mouse model within six months. Mol Cell Biochem 215:123–128PubMedCrossRefGoogle Scholar
  42. 42.
    Loehe F, Bittmann I, Weilbach C, Lauterjung L, Schildberg FW, Heiss MM (2002) Chlamydia pneumoniae in atherosclerotic lesions of patients undergoing vascular surgery. Ann Vasc Surg 16:467–73PubMedCrossRefGoogle Scholar
  43. 43.
    Lundberg B (1985) Chemical composition and physical state of lipid deposits in atherosclerosis. Atherosclerosis 56:93–110PubMedCrossRefGoogle Scholar
  44. 44.
    Lusis AJ (2000) Atherosclerosis. Nature 407:233–241PubMedCrossRefGoogle Scholar
  45. 45.
    Moazed TC, Campbell LA, Rosenfeld ME, Grayston JT, Kuo CC (1999) Chlamydia pneumoniae infection accelerates the progression of atherosclerosis in apolipoprotein E-deficient mice. J Infect Dis 180:238–241PubMedCrossRefGoogle Scholar
  46. 46.
    Moazed TC, Kuo CC, Grayston JT, Campbell LA (1998) Evidence of systemic dissemination of Chlamydia pneumoniae via macrophages in the mouse. J Infect Dis 177:1322–1325PubMedCrossRefGoogle Scholar
  47. 47.
    Mussa FF, Chai H, Wang X, Yao Q, Lumsden AB, Chen C (2006) Chlamydia pneumoniae and vascular disease: an update. J Vasc Surg 43:1301–1307PubMedCrossRefGoogle Scholar
  48. 48.
    Netea MG, Selzman CH, Kullberg BJ, Galama JM, Weinberg A, Stalenhoef AF, Van der Meer JW, Dinarello CA (2000) Acellular components of Chlamydia pneumoniae stimulate cytokine production in human blood mononuclear cells. Eur J Immunol 30:541–549PubMedCrossRefGoogle Scholar
  49. 49.
    Ong GM, Coyle PV, Barros D'Sa AA, McCluggage WG, Duprex WP, O'Neill HJ, Wyatt DE, Bamford KB, O'Loughlin B, McCaughey C (2001) Non-detection of Chlamydia species in carotid atheroma using generic primers by nested PCR in a population with a high prevalence of Chlamydia pneumoniae antibody. BMC Infect Dis 1:12PubMedCrossRefGoogle Scholar
  50. 50.
    Peters J, Hess S, Endlich K, Thalmann J, Holzberg D, Kracht M, Schaefer M, Bartling G, Klos A (2005) Silencing or permanent activation: host-cell responses in models of persistent Chlamydia pneumoniae infection. Cell Microbiol 7:1099–1108PubMedCrossRefGoogle Scholar
  51. 51.
    Prager M, Türel Z, Speidl WS, Zorn G, Kaun C, Niessner A, Heinze G, Huk I, Maurer G, Huber K, Wojta J (2002) Chlamydia pneumoniae in carotid artery atherosclerosis: a comparison of its presence in atherosclerotic plaque, healthy vessels, and circulating leukocytes from the same individuals. Stroke 33:2756–2761PubMedCrossRefGoogle Scholar
  52. 52.
    Prebeck S, Kirschning C, Dürr S, da Costa C, Donath B, Brand K, Redecke V, Wagner H, Miethke T (2001) Predominant role of Toll-like receptor 2 versus 4 in Chlamydia pneumoniae-induced activation of dendritic cells. J Immunol 167:3316–3323PubMedGoogle Scholar
  53. 53.
    Rassu M, Cazzavillan S, Scagnelli M, Peron A, Bevilacqua PA, Facco M, Bertoloni G, Lauro FM, Zambello R, Bonoldi E (2001) Demonstration of Chlamydia pneumoniae in atherosclerotic arteries from various vascular regions. Atherosclerosis 158:73–79PubMedCrossRefGoogle Scholar
  54. 54.
    Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  55. 55.
    Rupp J, Koch M, van Zandbergen G, Solbach W, Brandt E, Maass M (2005) Transmission of Chlamydia pneumoniae infection from blood monocytes to vascular cells in a novel transendothelial migration model. FEMS Microbiol Lett 242:203–208PubMedCrossRefGoogle Scholar
  56. 56.
    Saikku P, Leinonen M, Mattila K, Ekman MR, Nieminen MS, Mäkelä PH, Huttunen JK, Valtonen V (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2:983–986PubMedCrossRefGoogle Scholar
  57. 57.
    Simmons SR, Sims PA, Albrecht RM (1997) Alpha IIb beta 3 redistribution triggered by receptor cross-linking. Arterioscler Thromb Vasc Biol 17:3311–3320PubMedGoogle Scholar
  58. 58.
    Vink A, Poppen M, Schoneveld AH, Roholl PJ, de Kleijn DP, Borst C, Pasterkamp G (2001) Distribution of Chlamydia pneumoniae in the human arterial system and its relation to the local amount of atherosclerosis within the individual. Circulation 103:1613–1617PubMedGoogle Scholar
  59. 59.
    Weiss SM, Roblin PM, Gaydos CA, Cummings P, Patton DL, Schulhoff N, Shani J, Frankel R, Penney K, Quinn TC, Hammerschlag MR, Schachter J (1996) Failure to detect Chlamydia pneumoniae in coronary atheromas of patients undergoing atherectomy. J Infect Dis 173:957–962PubMedGoogle Scholar
  60. 60.
    Wolf K, Fischer E, Hackstadt T (2000) Ultrastructural analysis of developmental events in Chlamydia pneumoniae-infected cells. Infect Immun 68:2379–12385PubMedCrossRefGoogle Scholar
  61. 61.
    Wolf K, Fischer E, Hackstadt T (2005) Degradation of Chlamydia pneumoniae by peripheral blood monocytic cells. Infect Immun 73:4560–4570PubMedCrossRefGoogle Scholar
  62. 62.
    Yamashita K, Ouchi K, Shirai M, Gondo T, Nakazawa T, Ito H (1998) Distribution of Chlamydia pneumoniae infection in the atherosclerotic carotid artery. Stroke 29:773–778PubMedGoogle Scholar
  63. 63.
    Yaraei K, Campbell LA, Zhu X, Liles WC, Kuo CC, Rosenfeld ME (2005) Effect of Chlamydia pneumoniae on cellular ATP content in mouse macrophages: role of Toll-like receptor 2. Infect Immun 73:4323–4326PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Yuri V. Bobryshev
    • 1
    • 2
    Email author
  • Murray C. Killingsworth
    • 2
  • Dihn Tran
    • 3
  • Reginald Lord
    • 4
    • 5
  1. 1.Faculty of MedicineUniversity of New South WalesKensingtonAustralia
  2. 2.Department of Anatomical PathologySouth Western Area Pathology ServiceLiverpoolAustralia
  3. 3.Division of Anatomical PathologySt. Vincent’s Hospital SydneySidneyAustralia
  4. 4.St Vincent’s Hospital SydneyDarlinghurstAustralia
  5. 5.School of MedicineUniversity of Western SydneyCampbelltownAustralia

Personalised recommendations