Virchows Archiv

, Volume 452, Issue 6, pp 689–696 | Cite as

Complex t(5;8) involving the CSPG2 and PTK2B genes in a case of dermatofibrosarcoma protuberans without the COL1A1-PDGFB fusion

  • Laurence Bianchini
  • Georges Maire
  • Bernard Guillot
  • Jean-Marie Joujoux
  • Philippe Follana
  • Marie-Pierre Simon
  • Jean-Michel Coindre
  • Florence Pedeutour
Case Report


Dermatofibrosarcoma protuberans (DFSP) is a rare, dermal neoplasm of intermediate malignancy. It is made of spindle-shaped tumor cells in a storiform pattern positive for CD34. Cytogenetically, DFSP cells are characterized by either supernumerary ring chromosomes composed of sequences derived from chromosomes 17 and 22 or more rarely of translocations t(17;22). These chromosomal rearrangements lead to the formation of a specific chimeric gene fusing COL1A1 to PDGFB. So far, the COL1A1-PDGFB fusion gene remains the sole fusion gene identified in DFSP. However, some observations suggest that genes, other than COL1A1 and PDGFB, might be involved in some DFSP cases. We report in this paper a DFSP case presenting as a unique chromosomal abnormality a complex translocation between chromosomes 5 and 8. This is the first report of a DFSP case where the lack of chromosomes 17 and 22 rearrangement and the absence of COL1A1-PDGFB fusion gene have been demonstrated. Using fluorescence in situ hybridization analysis, we showed that the CSPG2 gene at 5q14.3 and the PTK2B gene at 8p21.2 were disrupted by this rearrangement. Although rare, the existence of cases of DFSP negative for the COL1A1-PDGFB fusion has to be taken in consideration when performing molecular diagnosis for a tumor suspected to be a DFSP.


Dermatofibrosarcoma protuberans Translocation t(5;8) CSPG2 PTK2B Cytogenetics) FISH 



We thank M. Rocchi (University of Bari, Italy), M-J Pébusque, M. Chaffanet, and D. Birnbaum (Institut Paoli Calmettes, Marseille, France) for kindly providing some of the BAC and YAC clones used in this study. This work was supported by the Comité des Alpes-Maritimes de la Ligue Nationale contre le Cancer, the Association pour la Recherche sur le Cancer, the Institut National du Cancer, and the Fondation pour la Recherche Médicale (master grant to P. Follana). The experiments described in this study comply with the current laws of France.

Conflict of interest statement

We declare that we have no conflict of interest.


  1. 1.
    Aiba S, Tabata N, Ishii H, Ootani H, Tagami H (1992) Dermatofibrosarcoma protuberans is a unique fibrohistiocytic tumour expressing CD34. Br J Dermatol 127:79–84PubMedCrossRefGoogle Scholar
  2. 2.
    Albert TK, Lemaire M, van Berkum NL, Gentz R, Collart MA, Timmers HT (2000) Isolation and characterization of human orthologs of yeast CCR4-NOT complex subunits. Nucleic Acids Res 28:809–817PubMedCrossRefGoogle Scholar
  3. 3.
    Asp J, Persson F, Kost-Alimova M, Stenman G (2006) CHCHD7-PLAG1 and TCEA1-PLAG1 gene fusions resulting from cryptic, intrachromosomal 8q rearrangements in pleomorphic salivary gland adenomas. Genes Chromosomes Cancer 45:820–828PubMedCrossRefGoogle Scholar
  4. 4.
    Bianchini L, Maire G, Pedeutour F (2007) [From cytogenetics to cytogenomics of dermatofibrosarcoma protuberans family of tumors]. Bull Cancer 94:179–189PubMedGoogle Scholar
  5. 5.
    Brown LF, Guidi AJ, Schnitt SJ, Van De Water L, Iruela-Arispe ML, Yeo TK, Tognazzi K, Dvorak HF (1999) Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 5:1041–1056PubMedGoogle Scholar
  6. 6.
    Cattaruzza S, Schiappacassi M, Kimata K, Colombatti A, Perris R (2004) The globular domains of PG-M/versican modulate the proliferation-apoptosis equilibrium and invasive capabilities of tumor cells. FASEB J 18:779–781PubMedGoogle Scholar
  7. 7.
    Craver RD, Correa H, Kao Y, Van Brunt T (1995) Dermatofibrosarcoma protuberans with 46,XY,t(X;7) abnormality in a child. Cancer Genet Cytogenet 80:75–77PubMedCrossRefGoogle Scholar
  8. 8.
    Fierro-Monti I, Mohammed S, Matthiesen R, Santoro R, Burns JS, Williams DJ, Proud CG, Kassem M, Jensen ON, Roepstorff P (2006) Quantitative proteomics identifies Gemin5, a scaffolding protein involved in ribonucleoprotein assembly, as a novel partner for eukaryotic initiation factor 4E. J Proteome Res 5:1367–1378PubMedCrossRefGoogle Scholar
  9. 9.
    Gan X, Kitakawa M, Yoshino K, Oshiro N, Yonezawa K, Isono K (2002) Tag-mediated isolation of yeast mitochondrial ribosome and mass spectrometric identification of its new components. Eur J Biochem 269:5203–5214PubMedCrossRefGoogle Scholar
  10. 10.
    Geurts JM, Schoenmakers EF, Roijer E, Astrom AK, Stenman G, van de Ven WJ (1998) Identification of NFIB as recurrent translocation partner gene of HMGIC in pleomorphic adenomas. Oncogene 16:865–872PubMedCrossRefGoogle Scholar
  11. 11.
    Geurts JM, Schoenmakers EF, Roijer E, Stenman G, Van de Ven WJ (1997) Expression of reciprocal hybrid transcripts of HMGIC and FHIT in a pleomorphic adenoma of the parotid gland. Cancer Res 57:13–17PubMedGoogle Scholar
  12. 12.
    Gloster HM Jr (1996) Dermatofibrosarcoma protuberans. J Am Acad Dermatol 35:355–374 (quiz 375–356)PubMedCrossRefGoogle Scholar
  13. 13.
    Isogai Z, Shinomura T, Yamakawa N, Takeuchi J, Tsuji T, Heinegard D, Kimata K (1996) 2B1 antigen characteristically expressed on extracellular matrices of human malignant tumors is a large chondroitin sulfate proteoglycan, PG-M/versican. Cancer Res 56:3902–3908PubMedGoogle Scholar
  14. 14.
    Kas K, Voz ML, Roijer E, Astrom AK, Meyen E, Stenman G, Van de Ven WJ (1997) Promoter swapping between the genes for a novel zinc finger protein and beta-catenin in pleiomorphic adenomas with t(3;8)(p21;q12) translocations. Nat Genet 15:170–174PubMedCrossRefGoogle Scholar
  15. 15.
    Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J (1995) Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 376:737–745PubMedCrossRefGoogle Scholar
  16. 16.
    Lierman E, Cools J (2007) TV6 and PDGFRB: a license to fuse. Haematologica 92:145–147PubMedCrossRefGoogle Scholar
  17. 17.
    Limon J, Dal Cin P, Sandberg AA (1986) Application of long-term collagenase disaggregation for the cytogenetic analysis of human solid tumors. Cancer Genet Cytogenet 23:305–313PubMedCrossRefGoogle Scholar
  18. 18.
    Lipinski CA, Tran NL, Menashi E, Rohl C, Kloss J, Bay RC, Berens ME, Loftus JC (2005) The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia 7:435–445PubMedCrossRefGoogle Scholar
  19. 19.
    Maire G, Forus A, Foa C, Bjerkehagen B, Mainguene C, Kresse SH, Myklebost O, Pedeutour F (2003) 11q13 alterations in two cases of hibernoma: large heterozygous deletions and rearrangement breakpoints near GARP in 11q13.5. Genes Chromosomes Cancer 37:389–395PubMedCrossRefGoogle Scholar
  20. 20.
    Maire G, Fraitag S, Galmiche L, Keslair F, Ebran N, Terrier-Lacombe MJ, de Prost Y, Pedeutour F (2007) A clinical, histologic, and molecular study of 9 cases of congenital dermatofibrosarcoma protuberans. Arch Dermatol 143:203–210PubMedCrossRefGoogle Scholar
  21. 21.
    Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, Della Peruta M, Bassi C, Miyazaki K, Sorio C (2005) Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers. FASEB J 19:1125–1127PubMedGoogle Scholar
  22. 22.
    McArthur G (2004) Molecularly targeted treatment for dermatofibrosarcoma protuberans. Semin Oncol 31:30–36PubMedCrossRefGoogle Scholar
  23. 23.
    Mitelman F, Johansson B, Mertens F (2007) The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7:233–245PubMedCrossRefGoogle Scholar
  24. 24.
    Paulus W, Baur I, Dours-Zimmermann MT, Zimmermann DR (1996) Differential expression of versican isoforms in brain tumors. J Neuropathol Exp Neurol 55:528–533PubMedCrossRefGoogle Scholar
  25. 25.
    Queimado L, Lopes CS, Reis AM (2007) WIF1, an inhibitor of the Wnt pathway, is rearranged in salivary gland tumors. Genes Chromosomes Cancer 46:215–225PubMedCrossRefGoogle Scholar
  26. 26.
    Ricciardelli C, Mayne K, Sykes PJ, Raymond WA, McCaul K, Marshall VR, Horsfall DJ (1998) Elevated levels of versican but not decorin predict disease progression in early-stage prostate cancer. Clin Cancer Res 4:963–971PubMedGoogle Scholar
  27. 27.
    Rubin BP, Schuetze SM, Eary JF, Norwood TH, Mirza S, Conrad EU, Bruckner JD (2002) Molecular targeting of platelet-derived growth factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 20:3586–3591PubMedCrossRefGoogle Scholar
  28. 28.
    Sandberg AA, Bridge JA (2000) Updates on cytogenetics and molecular genetics of bone and soft tissue tumors: Ewing sarcoma and peripheral primitive neuroectodermal tumors. Cancer Genet Cytogenet 123:1–26PubMedCrossRefGoogle Scholar
  29. 29.
    Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Sasaki T (1995) Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem 270:21206–21219PubMedCrossRefGoogle Scholar
  30. 30.
    Shaffer J, Tommerup N (2005) ISCN 2005: an international system for human cytogenetic nomenclature. Krager, BaselGoogle Scholar
  31. 31.
    Simon MP, Navarro M, Roux D, Pouyssegur J (2001) Structural and functional analysis of a chimeric protein COL1A1-PDGFB generated by the translocation t(17;22)(q22;q13.1) in Dermatofibrosarcoma protuberans (DP). Oncogene 20:2965–2975PubMedCrossRefGoogle Scholar
  32. 32.
    Simon MP, Pedeutour F, Sirvent N, Grosgeorge J, Minoletti F, Coindre JM, Terrier-Lacombe MJ, Mandahl N, Craver RD, Blin N, Sozzi G, Turc-Carel C, O'Brien KP, Kedra D, Fransson I, Guilbaud C, Dumanski JP (1997) Deregulation of the platelet-derived growth factor B-chain gene via fusion with collagen gene COL1A1 in dermatofibrosarcoma protuberans and giant-cell fibroblastoma. Nat Genet 15:95–98PubMedCrossRefGoogle Scholar
  33. 33.
    Sinovic J, Bridge JA (1994) Translocation (2;17) in recurrent dermatofibrosarcoma protuberans. Cancer Genet Cytogenet 75:156–157PubMedCrossRefGoogle Scholar
  34. 34.
    Sirvent N, Maire G, Pedeutour F (2003) Genetics of dermatofibrosarcoma protuberans family of tumors: from ring chromosomes to tyrosine kinase inhibitor treatment. Genes Chromosomes Cancer 37:1–19PubMedCrossRefGoogle Scholar
  35. 35.
    Sonobe H, Furihata M, Iwata J, Ohtsuki Y, Chikazawa M, Taguchi T, Shimizu K (1999) Dermatofibrosarcoma protuberans harboring t(9;22)(q32;q12.2). Cancer Genet Cytogenet 110:14–18PubMedCrossRefGoogle Scholar
  36. 36.
    Sun CK, Ng KT, Sun BS, Ho JW, Lee TK, Ng I, Poon RT, Lo CM, Liu CL, Man K, Fan ST (2007) The significance of proline-rich tyrosine kinase2 (Pyk2) on hepatocellular carcinoma progression and recurrence. Br J Cancer 97:50–57PubMedCrossRefGoogle Scholar
  37. 37.
    Terrier-Lacombe MJ, Guillou L, Maire G, Terrier P, Vince DR, de Saint Aubain Somerhausen N, Collin F, Pedeutour F, Coindre JM (2003) Dermatofibrosarcoma protuberans, giant cell fibroblastoma, and hybrid lesions in children: clinicopathologic comparative analysis of 28 cases with molecular data—a study from the French Federation of Cancer Centers Sarcoma Group. Am J Surg Pathol 27:27–39PubMedCrossRefGoogle Scholar
  38. 38.
    Touab M, Villena J, Barranco C, Arumi-Uria M, Bassols A (2002) Versican is differentially expressed in human melanoma and may play a role in tumor development. Am J Pathol 160:549–557PubMedGoogle Scholar
  39. 39.
    Voz ML, Astrom AK, Kas K, Mark J, Stenman G, Van de Ven WJ (1998) The recurrent translocation t(5;8)(p13;q12) in pleomorphic adenomas results in upregulation of PLAG1 gene expression under control of the LIFR promoter. Oncogene 16:1409–1416PubMedCrossRefGoogle Scholar
  40. 40.
    Wight TN (2002) Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 14:617–623PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang Y, Cao L, Yang BL, Yang BB (1998) The G3 domain of versican enhances cell proliferation via epidermial growth factor-like motifs. J Biol Chem 273:21342–21351PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Laurence Bianchini
    • 1
    • 2
  • Georges Maire
    • 1
    • 2
    • 6
  • Bernard Guillot
    • 3
  • Jean-Marie Joujoux
    • 4
  • Philippe Follana
    • 1
    • 2
  • Marie-Pierre Simon
    • 2
  • Jean-Michel Coindre
    • 5
  • Florence Pedeutour
    • 1
    • 2
  1. 1.Laboratoire de Génétique des Tumeurs Solides, Faculté de MédecineCentre Hospitalier Universitaire de Nice, Université de Nice-Sophia AntipolisNiceFrance
  2. 2.CNRS UMR 6543Centre-Antoine-LacassagneNiceFrance
  3. 3.Département de Dermatologie, Hôpital Saint-EloiCentre Hospitalier Universitaire de MontpellierMontpellierFrance
  4. 4.Département de PathologieCentre Hospitalier Universitaire de NîmesNîmesFrance
  5. 5.Département de PathologieInstitut BergoniéBordeauxFrance
  6. 6.Princess Margaret HospitalOntario Cancer InstituteTorontoCanada

Personalised recommendations