Virchows Archiv

, Volume 452, Issue 4, pp 383–392 | Cite as

Augmented β cell loss and mitochondrial abnormalities in sucrose-fed GK rats

  • Hiroki Mizukami
  • Ryuichi Wada
  • Motoi Koyama
  • Teruko Takeo
  • Sechiko Suga
  • Makoto Wakui
  • Soroku Yagihashi
Original Article


Progressive decline of islet β cell mass is a hallmark of type 2 diabetes, where nutritional insults are invoked in the pathologic process. Its detailed mechanisms are, however, incompletely understood. We explored the effect of sucrose diet on mitochondria in Goto Kakizaki (GK) rats, a spontaneously diabetic model. Six-week-old male GK rats were given 30% sucrose orally for 2 weeks. Normal Wistar rats fed with sucrose served as controls. Compared to untreated GK rats, sucrose-fed GK rats showed severe degeneration and death of β cells with disrupted and swollen mitochondria and a greater β cell loss. Submicroscopic analysis disclosed a smaller mean volume and a greater number of mitochondria in β cells in GK rats compared to those in Wistar rats. Mitochondria in sucrose-fed GK rats were 2.4-fold greater in mean volume than those in untreated state. Without sucrose feeding, there was no significant difference in mitochondrial membrane potentials (MmPs) of isolated islets between Wistar and GK rats. MmPs were reduced by 44% in sucrose-fed GK rats but not influenced in sucrose-fed Wistar rats. Current results suggest that nutritional insults like sucrose feeding may exert deleterious effects on mitochondria, resulting in augmented β cell loss in type 2 diabetes.


Type 2 diabetes Mitochondria Oxidative stress β cell death 



This study was not possible without the kind supply of GK rats from Drs. Hitoshi Ikeda and Hiroyuki Odaka, Research Institute, Takeda Pharmaceuticals. The authors are indebted to Ms. Yuko Sasaki for her expert technical assistance. This study was supported by grants to Soroku Yagihashi from the Ministry of Education, Science, Sports and Culture, Japan.


  1. 1.
    Abdel-Halim SM, Guenifi A, He B, Yang B, Mustafa M, Hojeberg B, Hillert J, Bakhiet M, Efendic S (1998) Mutations in the promoter of adenylyl cyclase (AC)-III gene, overexpression of AC-III mRNA, and enhanced cAMP generation in islets from the spontaneously diabetic GK rat model of type 2 diabetes. Diabetes 47:498–504PubMedCrossRefGoogle Scholar
  2. 2.
    Briaud I, Kelpe CL, Johnson LM, Tran PO, Poitout V (2002) Differential effects of hyperlipidemia on insulin secretion in islets of Langerhans from hyperglycemic versus normoglycemic rats. Diabetes 51:662–668PubMedCrossRefGoogle Scholar
  3. 3.
    Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000) Mitochondrial-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739PubMedGoogle Scholar
  4. 4.
    Dolz M, Bailbe D, Giroix MH, Calderari S, Gangnerau MN, Serradas P, Rickenbach K, Irminger JC, Portha B (2005) Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production. Diabetes 54:3229–3237PubMedCrossRefGoogle Scholar
  5. 5.
    Donath MY, Ehses JA, Maedler K, Schumann DM, Ellingsgaard H, Eppler E, Reinecke M (2005) Mechanisms of β-cell death in type 2 diabetes. Diabetes 54(Suppl 2):S108–S113PubMedCrossRefGoogle Scholar
  6. 6.
    Emaus RK, Grunwald R, Lemasters JJ (1986) Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim Biophys Acta 850:436–448PubMedCrossRefGoogle Scholar
  7. 7.
    Eto K, Tsubamoto Y, Terauchi Y, Sugiyama T, Kishimoto T, Takahashi N, Yamauchi N, Kubota N, Murayama S, Aizawa T, Akanuma Y, Aizawa S, Kasai H, Yazaki Y, Kadowaki T (1999) Role of NADH shuttle system in glucose-induced activation of mitochondrial metabolism and insulin secretion. Science 283:981–985PubMedCrossRefGoogle Scholar
  8. 8.
    Fex M, Nitert MD, Wierup N, Sundler F, Ling C, Mulder H (2007) Enhanced mitochondrial metabolism may account for the adaptation to insulin resistance in islets from C57BL/6J mice fed a high fat diet. Diabetologia 50:74–83PubMedCrossRefGoogle Scholar
  9. 9.
    Goto Y, Kakizaki M, Masaki N (1975) Spontaneous diabetes produced by selective breeding of normal Wistar rats. Proc Jpn Acad 51:80–85Google Scholar
  10. 10.
    Goto Y, Suzuki K, Ono T, Sasaki M, Toyota T (1988) Development of diabetes in the non-obese NIDDM rat (GK rat). Adv Exp Med Biol 246:29–31PubMedGoogle Scholar
  11. 11.
    Gross DJ, Leibowitz G, Cerasi E, Kaiser N (1996) Increased susceptibility of islets from diabetes-prone Psammomys obesus to the deleterious effects of chronic glucose exposure. Endocrinology 137:5610–5615PubMedCrossRefGoogle Scholar
  12. 12.
    Guenifi A, Abdel-Halim SM, Hoog A, Falkmer S, Östenson CG (1995) Preserved β-cell density in the endocrine pancreas of young, spontaneously diabetic Goto-Kakizaki (GK) rats. Pancreas 10:148–153PubMedCrossRefGoogle Scholar
  13. 13.
    Kim JS, He L, Lemasters JJ (2003) Mitochondria permeability transition: a common pathway to necrosis and apoptosis. Biochem Biophys Res Comm 304:463–470PubMedCrossRefGoogle Scholar
  14. 14.
    Kobayashi T, Nakanishi K, Nakase H, Kajio H, Okubo M, Murase T, Kosaka K (1997) In situ characterization of islets in diabetes with a mitochondrial DNA mutation at nucleotide position 3243. Diabetes 46:1567–1571PubMedCrossRefGoogle Scholar
  15. 15.
    Koyama M, Wada R, Mizukami H, Sakuraba H, Odaka H, Ikeda H, Yagihashi S (2000) Inhibition of progressive reduction of islet β-cell mass in spontaneously diabetic Goto-Kakizaki rats by α-glucosidase inhibitor. Metabolism 49:1–7CrossRefGoogle Scholar
  16. 16.
    Koyama M, Wada R, Sakuraba H, Mizukami H, Yagihashi S (1998) Accelerated loss of islet β cells in sucrose-fed Goto-Kakizaki rats, a genetic model of non-insulin-dependent diabetes mellitus. Am J Pathol 153:537–545PubMedGoogle Scholar
  17. 17.
    Krauss S, Zhang CY, Scorrano L, Dalgaard LT, St-Pierre J, Grey ST, Lowell BB (2003) Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 112:1831–1842PubMedGoogle Scholar
  18. 18.
    Lacy PE, Kostianovsky M (1967) Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35–39PubMedGoogle Scholar
  19. 19.
    Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH (1994) β-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-β-cell relationships. Proc Natl Acad Sci U S A 91:10878–10882PubMedCrossRefGoogle Scholar
  20. 20.
    Leonard JV, Schapira AHV (2000) Mitochondrial respiratory chain disorders II: neurodegenerative disorders and nuclear gene defects. Lancet 355:389–394PubMedCrossRefGoogle Scholar
  21. 21.
    Lowell BB, Schulman GI (2005) Mitochondrial dysfunction in type 2 diabetes. Science 307:384–387PubMedCrossRefGoogle Scholar
  22. 22.
    Odaka H, Sugiyama Y, Ikeda H (1991) Effect of pioglitazone on sucrose-deteriorated diabetic states in spontaneously diabetic GK rats. J Jpn Diab Soc 34:523–530Google Scholar
  23. 23.
    Östenson C-G, Abdel-Halim SM, Andersson A, Guenifi A, Khan A, Larsson O, Berggren PO, Efendic S (1996) Studies on the pathogenesis of NIDDM in the GK (Goto-Kakizaki) rat. In: Shafrir E (ed) Lessons from animal diabetes, VI. Birkhäuser, Boston, pp 299–315Google Scholar
  24. 24.
    Östenson CG, Khan A, Abdel-Halim SM, Guenifi A, Suzuki K, Goto Y, Efendic S (1993) Abnormal insulin secretion and glucose metabolism in pancreatic islets from the spontaneously diabetic GK rat. Diabetologia 36:3–8PubMedCrossRefGoogle Scholar
  25. 25.
    Otabe S, Yasuda K, Mori Y, Shimokawa K, Kadowaki H, Jimi A, Nonaka K, Akanuma Y, Yazaki Y, Kadowaki T (1999) Molecular and histological evaluation of pancreata from patients with a mitochondrial gene mutation associated with impaired insulin secretion. Biochem Biophys Res Commun 259:149–156PubMedCrossRefGoogle Scholar
  26. 26.
    Portha B, Giroix MH, Picon L (1982) Effect of diet on glucose tolerance and insulin response in chemically diabetic rats. Metabolism 31:1194–1199PubMedCrossRefGoogle Scholar
  27. 27.
    Portha B, Serradas P, Bailbe D, Suzuki K, Goto Y, Giroix MH (1991) β-cell insensitivity to glucose in the GK rat, a spontaneous non-obese model for type II diabetes. Diabetes 40:486–491PubMedCrossRefGoogle Scholar
  28. 28.
    Reiser S, Michaelis O IV, Putney J, Hallfrisch J (1975) Effects of sucrose feeding on the intestinal transport of sugars in two strains of rats. J Nutr 105:894–905PubMedGoogle Scholar
  29. 29.
    Rhodes CJ (2005) Type 2 diabetes: a matter of beta-cell life and death? Science 307:380–384PubMedCrossRefGoogle Scholar
  30. 30.
    Robertson RP, Harmon J, Tran PO, Poitout V (2003) Glucose toxicity in beta-cells: type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes 52:581–587PubMedCrossRefGoogle Scholar
  31. 31.
    Sakuraba H, Mizukami H, Yagihashi N, Wada R, Hanyu C, Yagihashi S (2002) Reduced beta-cell mass and expression of oxidative stress-related DNA damage in the islet of Japanese Type II diabetic patients. Diabetologia 45:85–96PubMedCrossRefGoogle Scholar
  32. 32.
    Santos MS, Santos DL, Palmeira CM, Seica R, Moreno AJ, Oliveira CR (2001) Brain and liver mitochondria isolated from diabetic Goto-Kakizaki rats show different susceptibility to induced oxidative stress. Diabetes Metab Res Rev 17:223–230PubMedCrossRefGoogle Scholar
  33. 33.
    Serradas P, Giroix MH, Saulnier C, Gangnerau MN, Borg LA, Welsh M, Portha B, Welsh N (1995) Mitochondrial deoxyribonucleic acid content is specifically decreased in adult, but not fetal, pancreatic islets of the Goto-Kakizaki rat, a genetic model of non-insulin-dependent diabetes. Endocrinology 136:5623–5631PubMedCrossRefGoogle Scholar
  34. 34.
    Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742PubMedCrossRefGoogle Scholar
  35. 35.
    Vallerand AL, Lupien J, Bukowiecki LJ (1986) Synergistic improvement of glucose intolerance by sucrose feeding and exercise training. Am J Physiol 250:E607–E614PubMedGoogle Scholar
  36. 36.
    Wu L, Nicholson W, Knobel SM, Steffner RJ, May JM, Piston DW, Powers AC (2004) Oxidative stress is a mediator of glucose toxicity in insulin-secreting pancreatic islet cell lines. J Biol Chem 279:12126–12134PubMedCrossRefGoogle Scholar
  37. 37.
    Yang S, Zhu H, Li Y, Lin H, Gabrielson K, Trush MA, Diehl AM (2000) Mitochondrial adaptations to obesity-related oxidant stress. Arch Biochem Biophys 378:259–268PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Hiroki Mizukami
    • 1
  • Ryuichi Wada
    • 1
  • Motoi Koyama
    • 1
  • Teruko Takeo
    • 2
  • Sechiko Suga
    • 2
  • Makoto Wakui
    • 2
  • Soroku Yagihashi
    • 1
  1. 1.Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
  2. 2.Department of PhysiologyHirosaki University Graduate School of MedicineHirosakiJapan

Personalised recommendations