Virchows Archiv

, Volume 450, Issue 3, pp 303–310 | Cite as

High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study

  • U. A. Miskad
  • S. Semba
  • H. Kato
  • Y. Matsukawa
  • Y. Kodama
  • E. Mizuuchi
  • N. Maeda
  • K. Yanagihara
  • H. Yokozaki
Original Article

Abstract

Phosphatase of regenerating liver (PRL)-3, encoding a 22-kD low molecular weight tyrosine phosphatase, has been reported to be associated with metastasis of colorectal carcinoma. We assessed the levels of PRL-3 mRNA expression to know whether its up-regulation was involved in progression and metastasis of gastric carcinoma. Levels of PRL-3 expression in 94 human gastric adenocarcinomas and 54 matched lymph node metastases were detected by in situ hybridization and compared with clinicopathological characteristics including prognosis. High PRL-3 expression was detected in 36.2% of primary gastric carcinoma (with nodal metastasis, 55.6%; without nodal metastasis, 10%; P < 0.001) and in 74.1% of lymph node metastases. The incidence of high PRL-3 expression in lymph node metastasis was significantly higher than in primary tumors (P < 0.044). Moreover, high expression of PRL-3 was closely associated with tumor size, lymphatic invasion, venous invasion, extent of lymph node metastasis, and tumor stage. These results suggest that high PRL-3 expression may participate in the progression and metastasis of gastric carcinoma. PRL-3 might be a novel molecular marker for aggressive gastric cancer.

Keywords

PRL-3 Gastric carcinoma in situ hybridization Lymph node metastasis 

Notes

Acknowledgement

This study was supported by Grants-in-Aid for Cancer Research from the Ministry of Health, Labor and Welfare of Japan (14-7). It is also supported in part by Grants-in-Aid for Scientific Research (B) (14370070) and Exploratory Research (18659096) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. Grant from the Terry Fox Run Foundation for Cancer Research was also indebted. The authors thank to Prof. Hiroki Kuniyasu (Department of Molecular Pathology, Nara Medical University) for valuable discussion and technical assistance.

References

  1. 1.
    Alberts SR, Cervantes A, van de Velde CJ (2003) Gastric cancer: epidemiology, pathology and treatment. Ann Oncol 14(Suppl 2):ii31–ii36PubMedGoogle Scholar
  2. 2.
    Bardelli A, Saha S, Sager JA, Romans KE, Xin B, Markowitz SD, Lengauer C, Velculescu VE, Kinzler KW, Vogelstein B (2003) PRL-3 expression in metastatic cancers. Clin Cancer Res 9:5607–5615PubMedGoogle Scholar
  3. 3.
    Bucana CD, Radinsky R, Dong Z, Sanchez R, Brigati DJ, Fidler IJ (1993) A rapid colorimetric in situ mRNA hybridization technique using hyperbiotinylated oligonucleotide probes for analysis of mdr1 in mouse colon carcinoma cells. J Histochem Cytochem 41:499–506PubMedGoogle Scholar
  4. 4.
    Buchholtz TW, Welch CE, Malt RA (1978) Clinical correlates of resectability and survival in gastric carcinoma. Ann Surg 188:711–715PubMedCrossRefGoogle Scholar
  5. 5.
    Cates CA, Michael RL, Stayrook KR, Harvey KA, Burke YD, Randall SK, Crowell PL, Crowell DN (1996) Prenylation of oncogenic human PTPCAAX protein tyrosine phosphatases. Cancer Lett 110:49–55PubMedCrossRefGoogle Scholar
  6. 6.
    Diamond RH, Cressman DE, Laz TM, Abrams CS, Taub R (1994) PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Mol Cell Biol 14:3752–3762PubMedGoogle Scholar
  7. 7.
    Fiordalisi JJ, Keller PJ, Cox AD (2006) PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res 66:3153–3161PubMedCrossRefGoogle Scholar
  8. 8.
    Hawley PR, Westerholm P, Morson BC (1970) Pathology and prognosis of carcinoma of the stomach. Br J Surg 57:877–883PubMedCrossRefGoogle Scholar
  9. 9.
    Hippo Y, Yashiro M, Ishii M, Taniguchi H, Tsutsumi S, Hirakawa K, Kodama T, Aburatani H (2001) Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Res 61:889–895PubMedGoogle Scholar
  10. 10.
    Japanese Gastric Cancer Association (1998) Japanese Classification of Gastric Carcinoma—2nd English Edition. Gastric Cancer 1:10–24PubMedCrossRefGoogle Scholar
  11. 11.
    Kato H, Semba S, Miskad UA, Seo Y, Kasuga M, Yokozaki H (2004) High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res 10:7318–7328PubMedCrossRefGoogle Scholar
  12. 12.
    Kim KA, Song JS, Jee J, Sheen MR, Lee C, Lee TG, Ro S, Cho JM, Lee W, Yamazaki T, Jeon YH, Cheong C (2004) Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Lett 565:181–187PubMedCrossRefGoogle Scholar
  13. 13.
    Li Z, Zhan W, Wang Z, Zhu B, He Y, Peng J, Cai S, Ma J (2006) Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochem Biophys Res Commun 348:229–237PubMedCrossRefGoogle Scholar
  14. 14.
    Matter WF, Estridge T, Zhang C, Belagaje R, Stancato L, Dixon J, Johnson B, Bloem L, Pickard T, Donaghue M, Acton S, Jeyaseelan R, Kadambi V, Vlahos CJ (2001) Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochem Biophys Res Commun 283:1061–1068PubMedCrossRefGoogle Scholar
  15. 15.
    Miskad UA, Semba S, Kato H, Yokozaki H (2004) Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology 71:176–184PubMedCrossRefGoogle Scholar
  16. 16.
    Mohn KL, Laz TM, Hsu JC, Melby AE, Bravo R, Taub R (1991) The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Mol Cell Biol 11:381–390PubMedGoogle Scholar
  17. 17.
    Park CS, Manahan LJ, Brigati DJ (1991) Automated molecular pathology: one hour in situ hybridization. J Histotechnol 14:219–229Google Scholar
  18. 18.
    Pearson WR, Lipman DJ (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448PubMedCrossRefGoogle Scholar
  19. 19.
    Peng L, Li Y, Meng L, Shou C (2004) Preparation and characterization of monoclonal antibody against protein tyrosine phosphatase PRL-3. Hybrid Hybridomics 23:23–27PubMedCrossRefGoogle Scholar
  20. 20.
    Peng L, Ning J, Meng L, Shou C (2004) The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol 130:521–526PubMedCrossRefGoogle Scholar
  21. 21.
    Peng L, Jin G, Wang L, Guo J, Meng L, Shou C (2006) Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochem Biophys Res Commun 342:179–183PubMedCrossRefGoogle Scholar
  22. 22.
    Radke I, Gotte M, Kersting C, Mattsson B, Kiesel L, Wulfing P (2006) Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. Br J Cancer 95:347–354PubMedCrossRefGoogle Scholar
  23. 23.
    Roder DM (2002) The epidemiology of gastric cancer. Gastric Cancer 5(Suppl 1):5–11PubMedCrossRefGoogle Scholar
  24. 24.
    Saha S, Bardelli A, Buckhaults P, Velculescu VE, Rago C, St Croix B, Romans KE, Choti MA, Lengauer C, Kinzler KW, Vogelstein B (2001) A phosphatase associated with metastasis of colorectal cancer. Science 294:1343–1346PubMedCrossRefGoogle Scholar
  25. 25.
    Semba S, Itoh N, Ito M, Youssef EM, Harada M, Moriya T, Kimura W, Yamakawa M (2002) Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin Cancer Res 8:3824–3831PubMedGoogle Scholar
  26. 26.
    Wang L, Peng L, Dong B, Kong L, Meng L, Yan L, Xie Y, Shou C (2006) Overexpression of phosphatase of regenerating liver-3 in breast cancer: association with a poor clinical outcome. Ann Oncol 17:1517–1522PubMedCrossRefGoogle Scholar
  27. 27.
    Werner SR, Lee PA, DeCamp MW, Crowell DN, Randall SK, Crowell PL (2003) Enhanced cell cycle progression and down regulation of p21Cip1/Waf1 by PRL tyrosine phosphatases. Cancer Lett 202:201–211PubMedCrossRefGoogle Scholar
  28. 28.
    Wu X, Zeng H, Zhang X, Zhao Y, Sha H, Ge X, Zhang M, Gao X, Xu Q (2004) Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. Am J Pathol 164:2039–2054PubMedGoogle Scholar
  29. 29.
    Yokozaki H, Yasui W, Tahara E (2001) Genetic and epigenetic changes in stomach cancer. Int Rev Cyt 204:49–95CrossRefGoogle Scholar
  30. 30.
    Zeng Q, Hong W, Tan YH (1998) Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochem Biophys Res Commun 244:421–427PubMedCrossRefGoogle Scholar
  31. 31.
    Zeng Q, Si X, Horstmann H, Xu Y, Hong W, Pallen CJ (2000) Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and-3 with the plasma membrane and the early endosome. J Biol Chem 275:21444–21452PubMedCrossRefGoogle Scholar
  32. 32.
    Zeng Q, Dong JM, Guo K, Li J, Tan HX, Koh V, Pallen CJ, Manser E, Hong W (2003) PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Res 63:2716–2722PubMedGoogle Scholar
  33. 33.
    Zhang ZY, Zhou B, Xie L (2002) Modulation of protein kinase signaling by protein phosphatases and inhibitors. Pharmacol Ther 93:307–317PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • U. A. Miskad
    • 1
  • S. Semba
    • 1
  • H. Kato
    • 1
  • Y. Matsukawa
    • 1
  • Y. Kodama
    • 1
  • E. Mizuuchi
    • 1
  • N. Maeda
    • 1
  • K. Yanagihara
    • 2
  • H. Yokozaki
    • 1
  1. 1.Division of Surgical Pathology, Department of Biomedical InformaticsKobe University Graduate School of MedicineChuo-kuJapan
  2. 2.Central Animal Laboratory, National Cancer Center Research InstituteTokyoJapan

Personalised recommendations