Virchows Archiv

, Volume 449, Issue 3, pp 334–340 | Cite as

COX-2 expression of ampullary carcinoma: correlation with different histotypes and clinicopathological parameters

  • Giuseppe Perrone
  • Daniele Santini
  • Mariagiovanna Zagami
  • Bruno Vincenzi
  • Alfio Verzì
  • Sergio Morini
  • Domenico Borzomati
  • Roberto Coppola
  • Armando Antinori
  • Paolo Magistrelli
  • Giuseppe Tonini
  • Carla Rabitti
Original Article

Abstract

Epidemiological studies suggest that regular intake of nonsteroidal anti-inflammatory drugs (NSAIDs) are associated with reduced incidence of gastrointestinal cancer. Several lines of evidence indicate that the antineoplastic effect of NSAIDs is attributable to COX-2 inhibition. The aim of our study was to assess COX-2 expression in a series of primary untreated ampullary carcinomas and its possible correlation with clinicopathological parameters. In the present study, 45 surgical specimens of invasive ampullary carcinomas were histologically classified into pancreaticobiliary, intestinal, and unusual types. COX-2 expression by immunohistochemical method was analyzed. High COX-2 expression was detected in 35 (77.8%) ampullary carcinomas. Among these, 20/21 (95.2%) were classified as intestinal, 9/18 (50%) pancreaticobiliary, and 6/6 (100%) unusual type. A significant statistical difference in terms of COX-2 expression was found between pancreaticobiliary vs intestinal type (P=0.002). Furthermore, a negative significant statistical correlation was found between T factor and COX-2 expression (P=0.047). The different COX-2 expression among histopathological types supports the concept of histogenetical difference of ampullary carcinomas. Furthermore, the high rate of COX-2 expression in the intestinal subtype of ampullary carcinoma may represent the rational for a histotype-tailored therapy targeting COX-2.

Keywords

Vater Ampulla Cancer Histotype COX-2 

Notes

Acknowledgements

We thank Alessandra Innocenzi and Giorgio Lescarini for technical support and Maria Crapulli for useful collaboration. The experiments comply with the current laws of the country in which they were performed.

References

  1. 1.
    Agoff SN, Crispin DA, Bronner MP, Dail DH, Hawes SE, Haggitt RC (2001) Neoplasms of the ampulla of vater with concurrent pancreatic intraductal neoplasia: a histological and molecular study. Mod Pathol 14:139–146PubMedCrossRefGoogle Scholar
  2. 2.
    Albores-Saavedra J, Henson DE, Klimstra DS (2000) Tumors of the gallbladder, extrahepatic bile duct, and ampulla of Vater. In: Rosai J, Sobin L (eds) Atlas of tumor pathology, 3rd series, fascicle 27. Armed Forces Institute of Pathology, Washington DC, pp 259–316Google Scholar
  3. 3.
    Altorki NK, Subbaramaiah K, Dannenberg AJ (2004) COX-2 inhibition in upper aerodigestive tract tumors. Semin Oncol 31:30–35PubMedCrossRefGoogle Scholar
  4. 4.
    Callejas NA, Casado M, Diaz-Guerra MJ, Bosca L, Martin-Sanz P (2001) Expression of cyclooxygenase-2 promotes the release of matrix metalloproteinases-2 and -9 in fetal rats hepatocytes. Hepatology 33:860–867PubMedCrossRefGoogle Scholar
  5. 5.
    Cianchi F, Cortesini C, Bechi P, Fantappie O, Messerini L, Vannacci A, Sardi I, Baroni G, Boddi V, Mazzanti R, Masini E (2001) Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology 121:1339–1347PubMedCrossRefGoogle Scholar
  6. 6.
    Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ (1999) Thromboxane A2 is a mediator of cyclooxygenase-2 dependent endothelial migration and angiogenesis. Cancer Res 59:4574–4577PubMedGoogle Scholar
  7. 7.
    Dannenberg AJ, Altorki NK, Boyle JO, Dang C, Howe LR, Weksler BB, Subbaramaiah K (2001) Cyclooxygenase-2: a pharmacological target for the prevention of cancer. Lancet Oncol 2:544–551PubMedCrossRefGoogle Scholar
  8. 8.
    Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188PubMedGoogle Scholar
  9. 9.
    Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676PubMedCrossRefGoogle Scholar
  10. 10.
    Fischer HP, Zhou H (2004) Pathogenesis of carcinoma of the papilla of Vater. J Hepatobiliary Pancreat Surg 11:301–309PubMedCrossRefGoogle Scholar
  11. 11.
    Gately S, Li WW (2004) Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31:2–11PubMedCrossRefGoogle Scholar
  12. 12.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  13. 13.
    Harris RE, Namboodiri KK, Farrar WB (1996) Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology 7:203–205PubMedCrossRefGoogle Scholar
  14. 14.
    Inoue H, Takamori M, Shimoyama Y, Ishibashi H, Yamamoto S, Koshihara Y (2002) Regulation by PGE2 of the production of interleukin-6, macrophage colony stimulating factor, and vascular endothelial growth factor in human synovial fibroblasts. Br J Pharmacol 136:287–295PubMedCrossRefGoogle Scholar
  15. 15.
    Johnson TW, Anderson KE, Lazovich D, Folsom AR (2002) Association of aspirin and nonsteroidal anti-inflammatory drug use with breast cancer. Cancer Epidemiol Biomarkers Prev 11:1586–1591PubMedGoogle Scholar
  16. 16.
    Kim HJ, Sohn TS, Lee KT, Lee JK, Paik SW, Rhee JC (2003) Expression of cyclooxygenase-2 and its correlation with clinicopathologic factors of ampulla of Vater cancer. J Korean Med Sci 18:218–224PubMedCrossRefGoogle Scholar
  17. 17.
    Kimura W, Ohtsubo K (1988) Incidence, sites of origin, and immunohistochemical and histochemical characteristics of atypical epithelium and minute carcinoma of the papilla of Vater. Cancer 61:1394–1402PubMedCrossRefGoogle Scholar
  18. 18.
    Kimura W, Futakawa N, Yamagata S, Wada Y, Kuroda A, Muto T, Esaki Y (1994) Different clinicopathologic findings in two histologic types of carcinoma of papilla of Vater. Jpn J Cancer Res 85:161–166PubMedGoogle Scholar
  19. 19.
    Matsubayashi H, Watanabe H, Yamaguchi T, Ajioka Y, Nishikura K, Kijima H, Saito T (1999) Differences in mucus and K-ras mutation in relation to phenotypes of tumors of the papilla of Vater. Cancer 86:596–607PubMedCrossRefGoogle Scholar
  20. 20.
    Murohara T, Horowitz JR, Silver M, Tsurumi Y, Chen D, Sullivan A, Isner JM (1998) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97:99–107PubMedGoogle Scholar
  21. 21.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149PubMedGoogle Scholar
  22. 22.
    Okami J, Yamamoto H, Fujiwara Y, Tsujie M, Kondo M, Noura S, Oshima S, Nagano H, Dono K, Umeshita K, Ishikawa O, Sakon M, Matsuura N, Nakamori S, Monden M (1999) Overexpression of cyclooxygenase-2 in carcinoma of the pancreas. Clin Cancer Res 5:2018–2024PubMedGoogle Scholar
  23. 23.
    Perrone G, Santini D, Verzi A, Vincenzi B, Borzomati D, Vecchio F, Coppola R, Antinori A, Magistrelli P, Tonini G, Rabitti C (2006) COX-2 expression in ampullary carcinoma: correlation with angiogenesis process and clinicopathological parameters. J Clin Pathol 59(5):492–496PubMedCrossRefGoogle Scholar
  24. 24.
    Perrone G, Santini D, Vincenzi B, Zagami M, La Cesa A, Bianchi A, Altomare V, Primavera A, Battista C, Vetrani A, Tonini G, Rabitti C (2005) COX-2 expression in DCIS: correlation with VEGF, HER-2/neu, prognostic molecular markers and clinicopathological features. Histopathology 46:561–568PubMedCrossRefGoogle Scholar
  25. 25.
    Ristimaki A, Honkanen N, Jankala H, Sipponen P, Harkonen M (1997) Expression of cyclooxygenase-2 in human gastric carcinoma. Cancer Res 57:1276–1280PubMedGoogle Scholar
  26. 26.
    Rosai J (2004) Appendix E. In: Rosai and Ackerman’s surgical pathology, 9th edn. Mosby, Edinburgh, pp 2953–2954Google Scholar
  27. 27.
    Rosenberg L, Palmer JR, Zauber AG, Warshauer ME, Stolley PD, Shapiro S (1991) A hypothesis: nonsteroidal anti-inflammatory drugs reduce the incidence of large-bowel cancer. J Natl Cancer Inst 83:355–358PubMedCrossRefGoogle Scholar
  28. 28.
    Santini D, Vincenzi B, Tonini G, Scarpa S, Vasaturo F, Malacrino C, Vecchio F, Borzomati D, Valeri S, Coppola R, Magistrelli P, Nuzzo G, Picciocchi A (2005) Cyclooxygenase-2 overexpression is associated with a poor outcome in resected ampullary cancer patients. Clin Cancer Res 11:3784–3789PubMedCrossRefGoogle Scholar
  29. 29.
    Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN (1998) Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res 58:362–366PubMedGoogle Scholar
  30. 30.
    Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182PubMedCrossRefGoogle Scholar
  31. 31.
    Sobin LH, Wittekind C (2002) TNM Classification of malignant tumours, 6th edn. UICC International Union Against Cancer, Wiley-Liss, New YorkGoogle Scholar
  32. 32.
    Stolina M, Sharma S, Lin Y, Dohadwala M, Gardner B, Luo J, Zhu L, Kronenberg M, Miller PW, Portanova J, Lee JC, Dubinett SM (2000) Specific inhibition of cyclooxygenase-2 restores antitumor reactivity by altering the balance of IL-10 and IL-12 synthesis. J Immunol 164:361–370PubMedGoogle Scholar
  33. 33.
    Subbaramaiah K, Telang N, Ramonetti JT, Araki R, DeVito B, Weksler BB, Dannenberg AJ (1996) Transcription of cyclooxygenase-2 is enhanced in transformed mammary epithelial cells. Cancer Res 56:4424–4429PubMedGoogle Scholar
  34. 34.
    Thun MJ, Namboodiri MM, Heath CW Jr (1991) Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 325:1593–1596PubMedCrossRefGoogle Scholar
  35. 35.
    Voest EE, Kenyon BM, O’Reilly MS, Truitt G, D’Amato RJ, Folkman J (1995) Inhibition of angiogenesis in vivo by interleukin-12. J Natl Cancer Inst 87:581–586PubMedCrossRefGoogle Scholar
  36. 36.
    Wang D, Mann JR, DuBois RN (2005) The role of prostaglandins and other eicosanoids in the gastrointestinal tract. Gastroenterology 128:1445–1461PubMedCrossRefGoogle Scholar
  37. 37.
    Weidner N (2000) Angiogenesis as a predictor of clinical outcome in cancer patients. Hum Pathol 31:403–405PubMedCrossRefGoogle Scholar
  38. 38.
    Wolff H, Saukkonen K, Anttila S, Karjalainen A, Vainio H, Ristimaki A (1998) Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 58:4997–5001PubMedGoogle Scholar
  39. 39.
    Zhao B, Kimura W, Futakawa N, Muto T, Kubota K, Harihara Y, Takayama T, Makuuchi M (1999) p53 and p21/Waf1 protein expression and K-ras codon 12 mutation in carcinoma of the papilla of Vater. Am J Gastroenterol 94:2128–2134PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou H, Schaefer N, Wolff M, Fischer HP (2004) Carcinoma of the ampulla of Vater: comparative histologic/immunohistochemical classification and follow-up. Am J Surg Pathol 28:875–882PubMedCrossRefGoogle Scholar
  41. 41.
    Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schror K (1999) Cyclooxygenase-2 expression in human esophageal carcinoma. Cancer Res 59:198–204PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Giuseppe Perrone
    • 1
  • Daniele Santini
    • 2
  • Mariagiovanna Zagami
    • 1
  • Bruno Vincenzi
    • 2
  • Alfio Verzì
    • 1
  • Sergio Morini
    • 3
  • Domenico Borzomati
    • 4
  • Roberto Coppola
    • 4
  • Armando Antinori
    • 5
  • Paolo Magistrelli
    • 5
  • Giuseppe Tonini
    • 2
  • Carla Rabitti
    • 1
  1. 1.Surgical PathologyCampus Bio-Medico UniversityRomeItaly
  2. 2.Oncology UnitCampus Bio-Medico UniversityRomeItaly
  3. 3.Department of Biomedical ResearchCampus Bio-Medico UniversityRomeItaly
  4. 4.General Surgery DepartmentCampus Bio-Medico UniversityRomeItaly
  5. 5.General Surgery DepartmentCatholic University of the Sacred HeartRomeItaly

Personalised recommendations