Virchows Archiv

, 449:175 | Cite as

The cardiac isoform of α-actin in regenerating and atrophic skeletal muscle, myopathies and rhabdomyomatous tumors: an immunohistochemical study using monoclonal antibodies

  • Roland Moll
  • Hans-Jürgen Holzhausen
  • Hans-Dieter Mennel
  • Caecilia Kuhn
  • Renate Baumann
  • Christiane Taege
  • Werner W. Franke
Original Article

Abstract

The two sarcomeric isoforms of actins, cardiac and skeletal muscle α-actin, are highly homologous so that their immunohistochemical distinction is extremely difficult. Taking advantage of monoclonal antibodies distinguishing the two conservative amino acid exchanges near the aminoterminus, we have performed an extended immunohistochemical analysis of the cardiac α-actin (CAA) isoform in normal, regenerating, diseased and neoplastic human muscle tissues. Intense and uniform CAA staining is seen in fetal and adult myocardium and in fetal skeletal muscle while adult skeletal muscle is essentially negative, except for muscle spindle myocytes and a few scattered muscle fibres with overall reduced diameter. By contrast, CAA synthesis is markedly induced in regenerating skeletal muscle cells, in Duchenne muscular dystrophy and upon degenerative atrophy. CAA has also been detected in certain vascular and visceral smooth muscle cells. Among tumors, CAA has consistently been seen in rhabdomyosarcomas and rhabdomyomatous cells of nephroblastomas, whereas, smooth muscle tumors have shown only occasional staining. While the synthesis of this actin isoform is less restricted than previously thought, monoclonal antibodies against CAA provide a well-defined, reliable and sensitive diagnostic tool for the definition and detection of aberrant differentiation in diseased skeletal muscle and of striated muscle differentiation in rhabdomyosarcomas.

Keywords

Heart Immunohistochemistry Myopathies Sarcomas 

References

  1. 1.
    Ahuja P, Perriard E, Perriard J-C, Ehler E (2004) Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci 117:3295–3306CrossRefPubMedGoogle Scholar
  2. 2.
    Babai F, Musevi-Aghdam J, Schürch W, Royal A, Gabbiani G (1990) Coexpression of alpha-sarcomeric actin, alpha-smooth muscle actin and desmin during myogenesis in rat and mouse embryos. I. Skeletal muscle. Differentiation 44:132–142PubMedCrossRefGoogle Scholar
  3. 3.
    Bakay M, Zhao P, Chen J, Hoffman EP (2002) A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscul Disord 12(Suppl 1):S125–S141CrossRefPubMedGoogle Scholar
  4. 4.
    Baroffio A, Bochaton-Piallat M-L, Gabbiani G, Bader CR (1995) Heterogeneity in the progeny of single human muscle satellite cells. Differentiation 59:259–268CrossRefPubMedGoogle Scholar
  5. 5.
    Baroffio A, Hamann M, Bernheim L, Bochaton-Piallat M-L, Gabbiani G, Bader CR (1996) Identification of self-renewing myoblasts in the progeny of single human muscle satellite cells. Differentiation 60:47–57CrossRefPubMedGoogle Scholar
  6. 6.
    Bea F, Bär H, Watson L, Blessing E, Kübler W, Kreuzer J, Jahn L (2000) Cardiac α-actin in smooth muscle cells: detection in umbilical cord vessels and in atherosclerotic lesions. Basic Res Cardiol 95:106–113CrossRefPubMedGoogle Scholar
  7. 7.
    Bochaton-Piallat M-L, Ropraz P, Gabbiani G, Santeusanio G, Palmieri G, Schiaroli S, Spagnoli LG (1992) Actin isoform and intermediate filament protein expression in human developing skeletal muscle. Basic Appl Myol 2:83–87Google Scholar
  8. 8.
    Bornemann A, Schmalbruch H (1992) Desmin and vimentin in regenerating muscles. Muscle Nerve 15:14–20CrossRefPubMedGoogle Scholar
  9. 9.
    Borrmann C (2000) Molekulare Charakterisierung der Adhärens-Zellverbindungen des Herzens: Identifizierung einer neuen Art, der Area composita. Ph.D. Thesis. University of Heidelberg, Heidelberg, Germany, 119 ppGoogle Scholar
  10. 10.
    Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol Apr 3 [Epub ahead of print]Google Scholar
  11. 11.
    Campion DR (1984) The muscle satellite cell: a review. Int Rev Cytol 87:225–251PubMedGoogle Scholar
  12. 12.
    Cerilli LA, Wick MR (2002) Immunohistology of soft tissue and osseous neoplasms. In: Dabbs DJ (ed) Diagnostic immunohistochemistry. Churchill Livingstone, New York. pp 59–112, Chapter 3Google Scholar
  13. 13.
    Cessna MH, Zhou H, Perkins SL, Tripp SR, Layfield L, Daines C, Coffin CM (2001) Are myogenin and myoD1 expression specific for rhabdomyosarcoma? A study of 150 cases, with emphasis on spindle cell mimics. Am J Surg Pathol 25:1150–1157CrossRefPubMedGoogle Scholar
  14. 14.
    Chaponnier C, Gabbiani G (2004) Pathological situations characterized by altered actin isoform expression. J Pathol 204:386–395CrossRefPubMedGoogle Scholar
  15. 15.
    Chen Y-W, Zhao P, Borup R, Hoffman EP (2000) Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 151:1321–1336CrossRefPubMedGoogle Scholar
  16. 16.
    Clarkson E, Costa EF, Machesky LM (2004) Congenital myopathies: diseases of the actin cytoskeleton. J Pathol 204:407–417CrossRefPubMedGoogle Scholar
  17. 17.
    Clément S, Chaponnier C, Gabbiani G (1999) A subpopulation of cardiomyocytes expressing alpha-skeletal actin is identified by a specific polyclonal antibody. Circ Res 85:e51–e58PubMedGoogle Scholar
  18. 18.
    Clément S, Orlandi A, Bocchi L, Pizzolato G, Foschini MP, Eusebi V, Gabbiani G (2003) Actin isoform pattern expression: a tool for the diagnosis and biological characterization of human rhabdomyosarcoma. Virchows Arch 442:31–38PubMedGoogle Scholar
  19. 19.
    Dodd S, Malone M, McCulloch W (1989) Rhabdomyosarcoma in children: a histological and immunohistochemical study of 59 cases. J Pathol 158:13–18CrossRefPubMedGoogle Scholar
  20. 20.
    Drenckhahn D, von Gaudecker B, Müller-Hermelink HK, Unsicker K, Gröschel-Stewart U (1979) Myosin and actin containing cells in the human postnatal thymus. Virchows Arch B Cell Pathol 32:33–45Google Scholar
  21. 21.
    Ehler E, Fowler VM, Perriard J-C (2004) Myofibrillogenesis in the developing chicken heart: role of actin isoforms and of the pointed end actin capping protein tropomodulin during thin filament assembly. Dev Dyn 229:745–755CrossRefPubMedGoogle Scholar
  22. 22.
    Eimoto T, Kusano T, Ando K, Kikuchi M, Shirakusa T, Kawanami S (1990) Nonneoplastic and nonhyperplastic thymus in myasthenia gravis. Am J Clin Pathol 94:36–43PubMedGoogle Scholar
  23. 23.
    Einat P, Shani M, Yaffe D (1990) The amount of the endogenous and exogenous skeletal muscle actin mRNA in the heart of transgenic mice is affected by the genotype of the cardiac actin gene. Differentiation 44:36–41PubMedCrossRefGoogle Scholar
  24. 24.
    Eusebi V, Ceccarelli C, Gorza L, Schiaffino S, Bussolati G (1986) Immunocytochemistry of rhabdomyosarcoma. The use of four different markers. Am J Surg Pathol 10:293–299PubMedCrossRefGoogle Scholar
  25. 25.
    Fawcett DW (1994) Bloom and Fawcett—a textbook of histology, 12th edn. Chapman & Hall, New York. pp 287–292Google Scholar
  26. 26.
    Franke WW, Schmid E, Vandekerckhove J, Weber K (1980) A permanently proliferating rat vascular smooth muscle cell with maintained expression of smooth muscle characteristics, including actin of the vascular smooth muscle type. J Cell Biol 87:594–600CrossRefPubMedGoogle Scholar
  27. 27.
    Franke WW, Schmid E, Grund C, Müller H, Engelbrecht I, Moll R, Stadler J, Jarasch E-D (1981) Antibodies to high molecular weight polypeptides of desmosomes: specific localization of a class of junctional proteins in cells and tissues. Differentiation 20:217–241PubMedCrossRefGoogle Scholar
  28. 28.
    Franke WW, Moll R, Schiller DL, Schmid E, Kartenbeck J, Müller H (1982) Desmoplakins of epithelial and myocardial desmosomes are immunologically and biochemically related. Differentiation 23:115–127PubMedCrossRefGoogle Scholar
  29. 29.
    Franke WW, Moll R, Müller H, Schmid E, Kuhn C, Krepler R, Artlieb U, Denk H (1983) Immunocytochemical identification of epithelium-derived human tumors with antibodies to desmosomal plaque proteins. Proc Natl Acad Sci USA 80:543–547PubMedCrossRefGoogle Scholar
  30. 30.
    Franke WW, Stehr S, Stumpp S, Kuhn C, Heid H, Rackwitz H-R, Schnölzer M, Baumann R, Holzhausen H-J, Moll R (1996) Specific immunohistochemical detection of cardiac/fetal α-actin in human cardiomyocytes and regenerating skeletal muscle cells. Differentiation 60:245–250CrossRefPubMedGoogle Scholar
  31. 31.
    Franke WW, Stumpp S, Stehr S (1999) Antibodies against heart muscle actin. United States Patent No. 5,972,633Google Scholar
  32. 32.
    Franke WW, Stumpp S, Stehr S (2001) Antikörper gegen Herzmuskel-Actin. Europäische Patentschrift EP 0 820 471 B1Google Scholar
  33. 33.
    Gallanti A, Prelle A, Moggio M, Ciscato P, Checcarelli N, Sciacco M, Comini A, Scarlato G (1992) Desmin and vimentin as markers of regeneration in muscle diseases. Acta Neuropathol (Berl) 85:88–92CrossRefGoogle Scholar
  34. 34.
    Gerull B, Heuser A, Wichter T, Paul M, Basson CT, McDermott DA, Lerman BB, Markowitz SM, Ellinor PT, MacRae CA, Peters S, Grossmann KS, Drenckhahn J, Michely B, Sasse-Klaassen S, Birchmeier W, Dietz R, Breithardt G, Schulze-Bahr E, Thierfelder L (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36:1162–1164CrossRefPubMedGoogle Scholar
  35. 35.
    Goodson HV, Hawse WF (2002) Molecular evolution of the actin family. J Cell Sci 115:2619–2622PubMedGoogle Scholar
  36. 36.
    Gröne HJ, Weber K, Gröne E, Helmchen U, Osborn M (1987) Coexpression of keratin and vimentin in damaged and regenerating tubular epithelia of the kidney. Am J Pathol 129:1–8PubMedGoogle Scholar
  37. 37.
    Grossmann KS, Grund C, Huelsken J, Behrend M, Erdmann B, Franke WW, Birchmeier W (2004) Requirement of plakophilin 2 for heart morphogenesis and cardiac junction formation. J Cell Biol 167:149–160CrossRefPubMedGoogle Scholar
  38. 38.
    Guan K, Fürst DO, Wobus AM (1999) Modulation of sarcomere organization during embryonic stem cell-derived cardiomyocyte differentiation. Eur J Cell Biol 78:813–823PubMedGoogle Scholar
  39. 39.
    Gunning P, Ponte P, Blau H, Kedes L (1983) α-Skeletal and α-cardiac actin genes are coexpressed in adult human skeletal muscle and heart. Mol Cell Biol 3:1985–1995PubMedGoogle Scholar
  40. 40.
    Gunning P, Ferguson V, Brennan K, Hardeman E (1997) Impact of α-skeletal actin but not α-cardiac actin on myoblast morphology. Cell Struct Funct 22:173–179PubMedCrossRefGoogle Scholar
  41. 41.
    Gunning PW, Ferguson V, Brennan KJ, Hardeman EC (2001) α-Skeletal actin induces a subset of muscle genes independently of muscle differentiation and withdrawal from the cell cycle. J Cell Sci 114:513–524PubMedGoogle Scholar
  42. 42.
    Harvey RP, Rosenthal N (eds) (1999) Heart Development. Academic Press, San Diego, CA, USA, 530 ppGoogle Scholar
  43. 43.
    Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551PubMedGoogle Scholar
  44. 44.
    Hayward LJ, Schwartz RJ (1986) Sequential expression of chicken actin genes during myogenesis. J Cell Biol 102:1485–1493CrossRefPubMedGoogle Scholar
  45. 45.
    Hayward LJ, Zhu YY, Schwartz RJ (1988) Cellular localization of muscle and nonmuscle actin mRNAs in chicken primary myogenic cultures: the induction of α-skeletal actin mRNA is regulated independently of α-cardiac actin gene expression. J Cell Biol 106:2077–2086CrossRefPubMedGoogle Scholar
  46. 46.
    Helliwell TR, Gunhan O, Edwards RHT (1989) Lectin binding and desmin expression during necrosis, regeneration, and neurogenic atrophy of human skeletal muscle. J Pathol 159:43–51CrossRefPubMedGoogle Scholar
  47. 47.
    Hurlimann J (1994) Desmin and neural marker expression in mesothelial cells and mesotheliomas. Hum Pathol 25:753–757CrossRefPubMedGoogle Scholar
  48. 48.
    Kirchner T, Hoppe F, Schalke B, Müller-Hermelink HK (1988) Microenvironment of thymic myoid cells in myasthenia gravis. Virchows Arch B Cell Pathol 54:295–302Google Scholar
  49. 49.
    Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin GP, O’Toole BA, Lessard J (1997) Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci USA 94:4406–4411CrossRefPubMedGoogle Scholar
  50. 50.
    Langbein L, Grund C, Kuhn C, Praetzel S, Kartenbeck J, Brandner JM, Moll I, Franke WW (2002) Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 81:419–435CrossRefPubMedGoogle Scholar
  51. 51.
    Langbein L, Pape U-F, Grund C, Kuhn C, Praetzel S, Moll I, Moll R, Franke WW (2003) Tight junction-related structures in the absence of a lumen: occludin, claudins and tight junction plaque proteins in densely packed cell formations of stratified epithelia and squamous cell carcinomas. Eur J Cell Biol 82:385–400CrossRefPubMedGoogle Scholar
  52. 52.
    Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J-I, Umezawa A, Ogawa S (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705PubMedCrossRefGoogle Scholar
  53. 53.
    Malouf NN, Coleman WB, Grisham JW, Lininger RA, Madden VJ, Sproul M, Anderson PA (2001) Adult-derived stem cells from the liver become myocytes in the heart in vivo. Am J Pathol 158:1929–1935PubMedGoogle Scholar
  54. 54.
    Mayer Y, Czosnek H, Zeelon PE, Yaffe D, Nudel U (1984) Expressing of the genes coding for the skeletal muscle and cardiac actins in the heart. Nucleic Acids Res 12:1087–1100PubMedCrossRefGoogle Scholar
  55. 55.
    McHugh KM, Crawford K, Lessard J (1991) A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Dev Biol 148:442–458CrossRefPubMedGoogle Scholar
  56. 56.
    Mertens C, Kuhn C, Moll R, Schwetlick I, Franke WW (1999) Desmosomal plakophilin 2 as a differentiation marker in normal and malignant tissues. Differentiation 64:277–290PubMedGoogle Scholar
  57. 57.
    Minty AJ, Alonso S, Caravatti M, Buckingham ME (1982) A fetal skeletal muscle actin mRNA in the mouse and its identity with cardiac actin mRNA. Cell 30:185–192CrossRefPubMedGoogle Scholar
  58. 58.
    Mogensen J, Klausen IC, Pedersen AK, Egeblad H, Bross P, Kruse TA, Gregersen N, Hansen PS, Baandrup U, Borglum AD (1999) α-Cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J Clin Invest 103:R39–R43PubMedCrossRefGoogle Scholar
  59. 59.
    Moll R, Franke WW, Schiller D, Geiger B, Krepler R (1982) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24CrossRefPubMedGoogle Scholar
  60. 60.
    Moll R, Cowin P, Kapprell H-P, Franke WW (1986) Desmosomal proteins: new markers for identification and classification of tumors. Lab Invest 54:4–25PubMedGoogle Scholar
  61. 61.
    Moll R, Hage C, Thoenes W (1991) Expression of intermediate filament proteins in fetal and adult human kidney: modulations of intermediate filament patterns during development and in damaged tissue. Lab Invest 65:74–86PubMedGoogle Scholar
  62. 62.
    Moll R (1993) Cytokeratins as markers of differentiation: expression profiles in epithelia and epithelial tumors. Progress in Pathology, vol. 142, Gustav Fischer, Stuttgart, pp 1–197Google Scholar
  63. 63.
    Moran CA, Koss MN (1993) Rhabdomyomatous thymoma. Am J Surg Pathol 17:633–636PubMedCrossRefGoogle Scholar
  64. 64.
    Olson TM, Michels VV, Thibodeau SN, Tai Y-S, Keating MT (1998) Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 280:750–752CrossRefPubMedGoogle Scholar
  65. 65.
    Ordahl CP (1986) The skeletal and cardiac alpha-actin genes are coexpressed in early embryonic striated muscle. Dev Biol 117:488–492CrossRefPubMedGoogle Scholar
  66. 66.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li BS, Picel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705CrossRefPubMedGoogle Scholar
  67. 67.
    Osborn M, Hill C, Altmannsberger M, Weber K (1986) Monoclonal antibodies to titin in conjunction with antibodies to desmin separate rhabdomyosarcomas from other tumor types. Lab Invest 55:101–108PubMedGoogle Scholar
  68. 68.
    Paterson BM, Eldridge JD (1984) α-Cardiac actin is the major sarcomeric isoform expressed in embryonic avian skeletal muscle. Science 224:1436–1438PubMedCrossRefGoogle Scholar
  69. 69.
    Pucci A, Gagliardotto P, Zanini C, Pansini S, di Summa M, Mollo F (2000) Histopathologic and clinical characterization of cardiac myxoma: review of 53 cases from a single institution. Am Heart J 140:134–138CrossRefPubMedGoogle Scholar
  70. 70.
    Rouger K, Brault M, Daval N, Leroux I, Guigand L, Lesoeur J, Fernandez B, Cherel Y (2004) Muscle satellite cell heterogeneity: in vitro and in vivo evidences for populations that fuse differently. Cell Tissue Res 317:319–326CrossRefPubMedGoogle Scholar
  71. 71.
    Rudy DE, Yatskievych TA, Antin PB, Gregorio CC (2001) Assembly of thick, thin, and titin filaments in chick precardiac explants. Dev Dyn 221:61–71CrossRefPubMedGoogle Scholar
  72. 72.
    Ruzicka DK, Schwartz RJ (1988) Sequential activation of α-actin genes during avian cardiogenesis: vascular smooth muscle α-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 107:2575–2586CrossRefPubMedGoogle Scholar
  73. 73.
    Sassoon DA, Garner I, Buckingham M (1988) Transcripts of α-cardiac and α-skeletal actins are early markers for myogenesis in the mouse embryo. Development 104:155–164PubMedGoogle Scholar
  74. 74.
    Schmid E, Tapscott S, Bennett GS, Croop J, Fellini SA, Holtzer H, Franke WW (1979) Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo. Differentiation 15:27–40PubMedCrossRefGoogle Scholar
  75. 75.
    Schürch W, Skalli O, Seemayer TA, Gabbiani G (1987) Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. I. Smooth muscle tumors. Am J Pathol 128:91–103PubMedGoogle Scholar
  76. 76.
    Schürch W, Bochaton-Piallat ML, Geinoz A, d’Amore E, Laurini RN, Cintorino M, Begin LR, Boivin Y, Gabbiani G (1994) All histological types of primary human rhabdomyosarcoma express alpha-cardiac and not alpha-skeletal actin messenger RNA. Am J Pathol 144:836–846PubMedGoogle Scholar
  77. 77.
    Seale P, Asakura A, Rudnicki MA (2001) The potential of muscle stem cells. Dev Cell 1:333–342CrossRefPubMedGoogle Scholar
  78. 78.
    Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554CrossRefPubMedGoogle Scholar
  79. 79.
    Shi SR, Key ME, Kalra KL (1991) Antigen retrieval in formalin-fixed, paraffin-embedded tissues: an enhancement method for immunohistochemical staining based on microwave oven heating of tissue sections. J Histochem Cytochem 39:741–748PubMedGoogle Scholar
  80. 80.
    Sjoberg G, Edstrom L, Lendahl U, Sejersen T (1994) Myofibers from Duchenne/Becker muscular dystrophy and myositis express the intermediate filament nestin. J Neuropathol Exp Neurol 53:416–423PubMedCrossRefGoogle Scholar
  81. 81.
    Skalli O, Gabbiani G, Babai F, Seemayer TA, Pizzolato G, Schürch W (1988) Intermediate filament proteins and actin isoforms as markers for soft tissue tumor differentiation and origin. II. Rhabdomyosarcomas. Am J Pathol 130:515–531PubMedGoogle Scholar
  82. 82.
    Springer ML, Ozawa CR, Blau HM (2002) Transient production of α-smooth muscle actin by skeletal myoblasts during differentiation in culture and following intramuscular implantation. Cell Motil Cytoskelet 51:177–186CrossRefGoogle Scholar
  83. 83.
    Suurmeijer AJ, Clément S, Francesconi A, Bocchi L, Angelini A, van Veldhuisen DJ, Spagnoli LG, Gabbiani G, Orlandi A (2003) α-Actin isoform distribution in normal and failing human heart: a morphological, morphometric, and biochemical study. J Pathol 199:387–397CrossRefPubMedGoogle Scholar
  84. 84.
    Taneja KL, Singer RH (1990) Detection and localization of actin mRNA isoforms in chicken muscle cells by in situ hybridization using biotinated oligonucleotide probes. J Cell Biochem 44:241–252CrossRefPubMedGoogle Scholar
  85. 85.
    Tonin PN, Scrable H, Shimada H, Cavenee WK (1991) Muscle-specific gene expression in rhabdomyosarcomas and stages of human fetal skeletal muscle development. Cancer Res 51:5100–5106PubMedGoogle Scholar
  86. 86.
    Toyofuku T, Hoffman JR, Zak R, Carlson BM (1992) Expression of α-cardiac and α-skeletal actin mRNAs in relation to innervation in regenerating and non-regenerating rat skeletal muscles. Dev Dyn 193:332–339PubMedGoogle Scholar
  87. 87.
    Urbanek K, Quaini F, Tasca G, Torella D, Castaldo C, Nadal-Ginard B, Leri A, Kajstura J, Quaini E, Anversa P (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci USA 100:10440–10445CrossRefPubMedGoogle Scholar
  88. 88.
    Vandekerckhove J, Weber K (1979) The complete amino acid sequence of actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rabbit slow skeletal muscle. A protein-chemical analysis of muscle actin differentiation. Differentiation 14:123–133PubMedCrossRefGoogle Scholar
  89. 89.
    Vandekerckhove J, Bugaisky G, Buckingham M (1986) Simultaneous expression of skeletal muscle and heart actin proteins in various striated muscle tissues and cells. J Biol Chem 261:1838–1843PubMedGoogle Scholar
  90. 90.
    Verfaillie CM (2002) Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 12:502–508CrossRefPubMedGoogle Scholar
  91. 91.
    Wang NP, Marx J, McNutt MA, Rutledge JC, Gown AM (1995) Expression of myogenic regulatory proteins (myogenin and MyoD1) in small blue round cell tumors of childhood. Am J Pathol 147:1799–1810PubMedGoogle Scholar
  92. 92.
    Webster C, Silberstein L, Hays AP, Blau HM (1988) Fast muscle fibers are preferentially affected in Duchenne muscular dystrophy. Cell 52:503–513CrossRefPubMedGoogle Scholar
  93. 93.
    Weiss SW, Goldblum JR (2001) Enzinger and Weiss’s soft tissue tumors. Chapter 22: Rhabdomyosarcoma, 4th edn, Mosby, St. Louis, pp 785–835Google Scholar
  94. 94.
    Wekerle H, Paterson B, Ketelsen U-P, Feldman M (1975) Striated muscle fibres differentiate in monolayer cultures of adult thymus reticulum. Nature 256:493–494CrossRefPubMedGoogle Scholar
  95. 95.
    Weller RO, Cumming WJK, Mahon M (1997) Diseases of muscle. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 489–581 (Chapter 8)Google Scholar
  96. 96.
    Wiens D, Spooner BS (1983) Actin isotype biosynthetic transitions in early cardiac organogenesis. Eur J Cell Biol 30:60–66PubMedGoogle Scholar
  97. 97.
    Woodcock-Mitchell J, Mitchell JJ, Low RB, Kieny M, Sengel P, Rubbia L, Skalli O, Jackson B, Gabbiani G (1988) α-Smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 39:161–166PubMedCrossRefGoogle Scholar
  98. 98.
    Wu AHB (ed) (1998) Cardiac markers. Humana Press, Totowa, NJ, USA, 300 ppGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Roland Moll
    • 1
  • Hans-Jürgen Holzhausen
    • 3
  • Hans-Dieter Mennel
    • 2
  • Caecilia Kuhn
    • 4
  • Renate Baumann
    • 1
  • Christiane Taege
    • 3
  • Werner W. Franke
    • 4
  1. 1.Institute of PathologyPhilipp University of MarburgMarburgGermany
  2. 2.Department of NeuropathologyPhilipp University of MarburgMarburgGermany
  3. 3.Institute of Pathology, Medical FacultyUniversity of Halle-WittenbergHalle (Saale)Germany
  4. 4.Division of Cell BiologyGerman Cancer Research CenterHeidelbergGermany

Personalised recommendations