Development Genes and Evolution

, Volume 229, Issue 5–6, pp 197–206 | Cite as

RNA-seq analysis provides insight into molecular adaptations of Andrias davidianus

  • Xiaofang Geng
  • Lu Zhang
  • Xiayan Zang
  • Jianlin Guo
  • Cunshuan XuEmail author
Original Article


The Chinese giant salamander Andrias davidianus is regarded as an ideal model for studying local adaptations, such as longevity, tolerance to starvation, and cutaneous respiration. Transcriptome analysis is useful for studying the large and complex genomes of amphibians. Based on the coding gene set of adult A. davidianus, dozens of A. davidianus–specific genes were identified and three signaling pathway (JAK-STAT, HIF-1, and FoxO) genes were expanded as compared with other amphibians. The results of the pathway analysis of A. davidianus–specific genes indicated that the molecular adaptation of A. davidianus may have required a more rapid evolution of the immune system. Additionally, for the first time, the gene expressions in different parts of the skin tissue were compared. The results of the comparison analysis demonstrated that lateral skin could be more focused on mucus secretion, dorsal skin on immunity and melanogenesis, and abdominal skin on water and salt metabolism. This study provides the first insight into studying longevity and starvation tolerance in A. davidianus, and offers a basis for further investigation of the molecular mechanisms of adaptations in amphibians.


Chinese giant salamander Transcriptome Molecular adaptation Longevity Starvation tolerance 



We thank Chongqing Kui Xu Biotechnology Incorporated Company for providing us Chinese giant salamanders.

Authors’ contributions

CSX and XFG designed the project. XFG, LZ, and XYZ conducted the experiments. JLG contributed the analysis tools. XFG wrote the manuscript with input from all authors. All authors worked on the final version of the manuscript.

Funding information

This work was supported by grants from the National Natural Science Foundation of China (No. 31572270 and No. 81802099), and Natural Science Foundation of Henan Province (No. 162300410144).


  1. Berri M, Virlogeux-Payant I, Chevaleyre C, Melo S, Zanello G, Salmon H, Meurens F (2014) CCL28 involvement in mucosal tissues protection as a chemokine and as an antibacterial peptide. Dev Comp Immunol 44:286–290. CrossRefPubMedGoogle Scholar
  2. Che R, Sun Y, Wang R, Xu T (2014) Transcriptomic analysis of endangered Chinese salamander: identification of immune, sex and reproduction-related genes and genetic markers. PLoS One 9:e87940. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fathy M, Awale S, Nikaido T (2017) Phosphorylated Akt protein at ser473 enables HeLa cells to tolerate nutrient-deprived conditions. Asian Pac J Cancer Prev 18:3255–3260. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Gao KQ, Shubin NH (2003) Earliest known crown-group salamanders. Nature 422:424–428. CrossRefPubMedGoogle Scholar
  5. Geng X, Li W, Shang H, Gou Q, Zhang F, Zang X, Zeng B, Li J, Wang Y, Ma J, Guo J, Jian J, Chen B, Qiao Z, Zhou M, Wei H, Fang X, Xu C (2017a) A reference gene set construction using RNA-seq of multiple tissues of Chinese giant salamander, Andrias davidianus. Gigascience 6:1–7. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Geng X, Li W, Shang H et al (2017b) Supporting data for "A reference gene set construction using RNA-seq of multiple tissues of Chinese Giant Salamander, Andrias davidianus". GigaScience Database.
  7. Grall A, Guaguere E, Planchais S et al (2012) PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet 44:140–147. CrossRefPubMedGoogle Scholar
  8. Gremlich S, Nolan C, Roduit R et al (2005) Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation. Endocrinology 146:375–382. CrossRefPubMedGoogle Scholar
  9. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hall JA, Tabata M, Rodgers JT, Puigserver P (2014) USP7 attenuates hepatic gluconeogenesis through modulation of FoxO1 gene promoter occupancy. Mol Endocrinol 28:912–924. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Heimbucher T, Hunter T (2015) The C. elegans Ortholog of USP7 controls DAF-16 stability in Insulin/IGF-1-like signaling. Worm 4:e1103429. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hibshman JD, Doan AE, Moore BT, Kaplan RE (2017) daf-16/FoxO promotes gluconeogenesis and trehalose synthesis during starvation to support survival. Elife 6:e30057. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hu G, Hacham M, Waterman SR et al (2008) PI3K signaling of autophagy is required for starvation tolerance and virulenceof Cryptococcus neoformans. J Clin Invest 118:1186–1197. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hu Q, Tian H, Li W, Meng Y, Wang Q, Xiao H (2019) Identification of critical sex-biased genes in Andrias davidianus by de novo transcriptome. Mol Gen Genomics 294:287–299. CrossRefGoogle Scholar
  15. Hwang AB, Ryu EA, Artan M et al (2014) Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 111:E4458–E4467. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Itoi-Ochi S, Terao M, Murota H, Katayama I (2016) Local corticosterone activation by 11beta-hydroxysteroid dehydrogenase 1 in keratinocytes: the role in narrow-band UVB-induced dermatitis. Dermatoendocrinol 8:e1119958. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jorgensen CB (2000) Amphibian respiration and olfaction and their relationships: from Robert Townson (1794) to the present. Biol Rev Camb Philos Soc 75:297–345. CrossRefPubMedGoogle Scholar
  18. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lazado CC, Lund I, Pedersen PB, Nguyen HQ (2015) Humoral and mucosal defense molecules rhythmically oscillate during a light-dark cycle in permit, Trachinotus falcatus. Fish Shellfish Immunol 47:902–912. CrossRefPubMedGoogle Scholar
  20. Lee SH, Lee SK, Paik D, Min KJ (2012) Overexpression of fatty-acid-beta-oxidation-related genes extends the lifespan of Drosophila melanogaster. Oxidative Med Cell Longev 2012:854502. CrossRefGoogle Scholar
  21. Leiser SF, Miller H, Rossner R et al (2015) Cell nonautonomous activation of flavin-containing monooxygenase promotes longevity and health span. Science (New York, NY) 350:1375–1378. CrossRefGoogle Scholar
  22. Li H, Coghlan A, Ruan J et al (2006) TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 34:D572–D580. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Li F, Wang L, Lan Q, Yang H, Li Y, Liu X, Yang Z (2015) RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing. PLoS One 10:e0123730. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lin XX, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR 3rd, Ruvkun G, Riedel CG (2018) DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun 9:4400. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Martins R, Lithgow GJ, Link W (2016) Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell 15:196–207. CrossRefPubMedGoogle Scholar
  26. Mohan T, Deng L, Wang BZ (2017) CCL28 chemokine: an anchoring point bridging innate and adaptive immunity. Int Immunopharmacol 51:165–170. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J (2013) The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Nakamura K, Islam MR, Takayanagi M, Yasumuro H, Inami W, Kunahong A, Casco-Robles RM, Toyama F, Chiba C (2014) A transcriptome for the study of early processes of retinal regeneration in the adult newt, Cynops pyrrhogaster. PLoS One 9:e109831. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Perez-Sanchez J, Estensoro I, Redondo MJ, Calduch-Giner JA, Kaushik S, Sitja-Bobadilla A (2013) Mucins as diagnostic and prognostic biomarkers in a fish-parasite model: transcriptional and functional analysis. PLoS One 8:e65457. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pickering AM, Lehr M, Miller RA (2015) Lifespan of mice and primates correlates with immunoproteasome expression. J Clin Invest 125:2059–2068. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Qi Z, Zhang Q, Wang Z et al (2016) Transcriptome analysis of the endangered Chinese giant salamander (Andrias davidianus): immune modulation in response to Aeromonas hydrophila infection. Vet Immunol Immunopathol 169:85–95. CrossRefPubMedGoogle Scholar
  32. Shamalnasab M, Dhaoui M, Thondamal M et al (2017) HIF-1-dependent regulation of lifespan in by the acyl-CoA-binding protein MAA-1. Aging 9:1745–1769. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shibata Y, Sano T, Tsuchiya N et al (2014) Gene expression and localization of two types of AQP5 in Xenopus tropicalis under hydration and dehydration. Am J Phys Regul Integr Comp Phys 307:R44–R56. CrossRefGoogle Scholar
  34. Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, Li W, Janjetovic Z, Postlethwaite A, Zouboulis CC, Tuckey RC (2013) Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol 137:107–123. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Snider A, Bowler J (1992). Longevity of reptiles and amphibians in North American collections. Society for the Study of Amphibians and ReptilesGoogle Scholar
  36. Su S, Wang Y, Wang H, Huang W, Chen J, Xing J, Xu P, Yuan X, Huang C, Zhou Y (2018) Comparative expression analysis identifies the respiratory transition-related miRNAs and their target genes in tissues of metamorphosing Chinese giant salamander (Andrias davidianus). BMC Genomics 19:406. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Turvey ST, Chen S, Tapley B, Wei G, Xie F, Yan F, Yang J, Liang Z, Tian H, Wu M, Okada S, Wang J, Lü J, Zhou F, Papworth SK, Redbond J, Brown T, Che J, Cunningham AA (2018) Imminent extinction in the wild of the world’s largest amphibian. Curr Biol: CB 28:R592–R594. CrossRefPubMedGoogle Scholar
  38. Voss SR, Kump DK, Putta S, Pauly N, Reynolds A, Henry RJ, Basa S, Walker JA, Smith JJ (2011) Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res 21:1306–1312. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Willumsen NJ, Amstrup J, Mobjerg N, Jespersen A, Kristensen P, Larsen EH (2002) Mitochondria-rich cells as experimental model in studies of epithelial chloride channels. Biochim Biophys Acta 1566:28–43. CrossRefPubMedGoogle Scholar
  40. Xie C, Mao X, Huang J, Ding Y, Wu J, Dong S, Kong L, Gao G, Li CY, Wei L (2011) KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res 39:W316–W322. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Xiong J, Lv Y, Huang Y, Liu Q (2019) The first transcriptome assembly of yenyuan stream salamander (Batrachuperus yenyuanensis) provides novel insights into its molecular evolution. Int J Mol Sci 20:E1529. CrossRefPubMedGoogle Scholar
  42. Xu X, Lai R (2015) The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 115:1760–1846. CrossRefPubMedGoogle Scholar
  43. Yu X, Lin J, Zack DJ, Qian J (2006) Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Res 34:4925–4936. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zeisset I, Beebee TJ (2008) Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity (Edinb) 101:109–119. CrossRefGoogle Scholar
  45. Zhu B, Feng Z, Qu A, Gao H, Zhang Y, Sun D, Song W, Saura A (2002a) Brief report. The karyotype of the caudate amphibian Andrias davidianus. Hereditas 136:85–88. CrossRefPubMedGoogle Scholar
  46. Zhu B, Feng Z, Qu A, Gao H, Zhang Y, Sun D, Song W, Saura A (2002b) The karyotype of the caudate amphibian Andrias davidianus. Hereditas 136:85–88. CrossRefPubMedGoogle Scholar
  47. Zolghadri S, Bahrami A, Hassan Khan MT, Munoz-Munoz J, Garcia-Molina F, Garcia-Canovas F, Saboury AA (2019) A comprehensive review on tyrosinase inhibitors. J Enzyme Inhib Med Chem 34:279–309. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Laboratory MedicineXinxiang Medical UniversityXinxiangChina
  2. 2.State Key Laboratory Cultivation Base for Cell Differentiation Regulation, College of Life ScienceHenan Normal UniversityXinxiangChina

Personalised recommendations