Development Genes and Evolution

, Volume 226, Issue 5, pp 349–354 | Cite as

Major ontogenetic transitions during Volvox (Chlorophyta) evolution: when and where might they have occurred?

  • Alexey G. DesnitskiyEmail author


This paper represents an attempt to unify data from various lines of Volvox research: developmental biology, biogeography, and evolution. Several species (such as Volvox carteri and Volvox spermatosphaera) are characterized by rapid divisions of asexual reproductive cells, which may proceed in darkness. By contrast, several other species (such as Volvox aureus, Volvox globator, and Volvox tertius) exhibit slow and light/dependent divisions. The transition from the former pattern of asexual life cycle to the latter one has occurred in three lineages of the genus Volvox. Since V. aureus (unlike V. carteri) is able to complete the life cycle at a short photoperiod (8 h light/16 h dark regime), it is reasonable to suggest that the abovementioned evolutionary transitions might have occurred as adaptations to short winter days in high latitudes under warm climate conditions in the deep past. In the case of the lineage leading to V. tertius + Volvox dissipatrix, the crucial reorganizations of asexual life cycle might have occurred between about 45 and 60 million years ago in relatively high latitudes of Southern Hemisphere.


Eco-evo-devo Gondwana Light/dark control Ontogenetic diversity Reproductive cell division Volvox 



I am grateful to Matthew Herron (University of Montana, Missoula) for helpful discussion on Volvox phylogeny and comments on an early draft of this paper. My sincere thanks go to an anonymous reviewer who made valuable suggestions.

Compliance with ethical standards

Declaration of interest

The author declares that he has no conflict of interest.


  1. Barron EJ, Sloan JL, Harrison CGA (1980) Potential significance of land–sea distribution and surface albedo variations as a climatic forcing factor; 180 m.y. to the present. Palaeogeogr Palaeoclimatol Palaeoecol 30:17–40CrossRefGoogle Scholar
  2. Chapman VJ, Thompson RH, Segar ECM (1957) Check list of fresh-water algae of New Zealand. Trans Roy Soc N Z 84:695–747Google Scholar
  3. Coleman AW (1996) The Indian connection, crucial to reconstruction of the historical biogeography of freshwater algae: examples among Volvocaceae (Chlorophyta). Nova Hedwigia 112:477–482Google Scholar
  4. DeConto RM, Pollard D, Wilson PA, Pӓlike H, Lear CH, Pagan M (2008) Thresholds for Cenozoic bipolar glaciation. Nature 455:652–656CrossRefPubMedGoogle Scholar
  5. Desnitski AG (1992) Cellular mechanisms of the evolution of ontogenesis in Volvox. Arch Protistenkd 141:171–178CrossRefGoogle Scholar
  6. Desnitski AG (1995) A review on the evolution of development in Volvox—morphological and physiological aspects. Eur J Protistol 31:241–247CrossRefGoogle Scholar
  7. Desnitskiy AG (1984) Some features of cell division regulations in Volvox. Tsitologiia 26:269–274Google Scholar
  8. Desnitskiy AG (1996) On the geographical distribution of the species of the genus Volvox (Chlorophyta, Volvocales). Bot J (St Petersburg) 81(3):28–33Google Scholar
  9. Desnitskiy AG (1997) The synopsis of the species of the genus Volvox. Vestnik St Petersburg State University 24:19–29Google Scholar
  10. Desnitskiy AG (2006) Evolutionary reorganizations of ontogenesis in related species of coenobial volvocine algae. Russ J Dev Biol 37:213–223CrossRefGoogle Scholar
  11. Desnitskiy AG (2008a) Volvox: evolutionary reorganizations of ontogenesis in related species. St. Petersburg University Press, St. PetersburgGoogle Scholar
  12. Desnitskiy AG (2008b) On the problem of ecological evolution of Volvox. Russ J Dev Biol 39:122–124CrossRefGoogle Scholar
  13. Desnitskiy AG (2009) Volvox (Chlorophyta, Volvocales) as a model organism in developmental biology. Russ J Dev Biol 40:238–241CrossRefGoogle Scholar
  14. Desnitskiy AG (2014) Ontogenetic diversity of colonies and intercellular cytoplasmic bridges in the algae of the genus Volvox. Russ J Dev Biol 45:231–234CrossRefGoogle Scholar
  15. Eldrett JS, Greenwood DR, Harding IC, Huber M (2009) Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459:969–973CrossRefPubMedGoogle Scholar
  16. Ettl H (1983) Chlorophyta. 1. Phytomonadina. Gustav Fischer, StuttgartGoogle Scholar
  17. Gilbert SF (2001) Ecological developmental biology: developmental biology meets the real world. Dev Biol 233:1–12CrossRefPubMedGoogle Scholar
  18. Gilbert SF (2009) Ecological development biology. In: Encyclopedia of life sciences (ELS). Wiley, Chichester. doi:10.1002/9780470015902.a0020479Google Scholar
  19. Herman AB, Spicer RA, Kvacek J (2002) Late Cretaceous climate of Eurasia and Alaska: a quantitative palaeobotanical approach. In: Wagreich M (ed) Aspects of Cretaceous stratigraphy and palaeobiogeography. Verlag der Ȍsterreichischen Akademie der Wissenschaften, Wien, pp. 93–108Google Scholar
  20. Herron MD, Michod RE (2008) Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution 62:436–451CrossRefPubMedGoogle Scholar
  21. Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci U S A 106:3254–3258CrossRefPubMedPubMedCentralGoogle Scholar
  22. Herron MD, Desnitskiy AG, Michod RE (2010) Evolution of developmental programs in Volvox (Chlorophyta). J Phycol 46:316–324CrossRefGoogle Scholar
  23. Isaka N, Kawai-Toyooka H, Matsuzaki R, Nakada T, Nozaki H (2012) Description of two new monoecious species of Volvox sect. Volvox (Volvocaceae, Chlorophyceae) based on comparative morphology and molecular phylogeny of cultured material. J Phycol 48:759–767CrossRefPubMedGoogle Scholar
  24. Iyengar MOP, Desikachary TV (1981) Volvocales. Indian Council Agriculture Research, New DelhiGoogle Scholar
  25. Karn RC, Starr RC, Hudock GA (1974) Sexual and asexual differentiation in Volvox obversus (Shaw) Printz, strains WD3 and WD7. Arch Protistenkd 116:142–148Google Scholar
  26. Kirk DL (1998) Volvox: molecular-genetic origins of multicellularity and cellular differentiation. Cambridge University Press, New YorkGoogle Scholar
  27. Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. BioEssays 27:299–310CrossRefPubMedGoogle Scholar
  28. Komarenko LE, Vassilieva II (1978) Freshwater green algae of Yakutia waters. Nauka Press, Moscow, RussiaGoogle Scholar
  29. Leliaert F, Verbruggen H, Vanormelingen P, Steen F, López-Bautista JM, Zuccarello GC, De Clerck O (2014) DNA-based species delimitation in algae. Eur J Phycol 49:179–196CrossRefGoogle Scholar
  30. Nozaki H (1988) Morphology, sexual reproduction and taxonomy of Volvox carteri f. kawasakiensis f. nov. (Chlorophyta) from Japan. Phycologia 27:209–220CrossRefGoogle Scholar
  31. Nozaki H (2003) Origin and evolution of the genera Pleodorina and Volvox. Biologia 58:425–431Google Scholar
  32. Nozaki H, Coleman AW (2011) A new species of Volvox sect. Merrillosphaera (Volvocaceae, Chlorophyceae) from Texas. J Phycol 47:673–679CrossRefPubMedGoogle Scholar
  33. Nozaki H, Matsuzaki R, Yamamoto K, Kawachi M, Takahashi F (2015a) Delineating a new heterothallic species of Volvox (Volvocaceae, Chlorophyceae) using new strains of “Volvox africanus”. PLoS One 10(11):e0142632. doi:101371/journal.pone.0142632Google Scholar
  34. Nozaki H, Ueki N, Misumi O, Yamamoto K, Yamashita S, Herron MD, Rozenzweig F (2015b) Morphology and reproduction of Volvox capensis (Volvocales, Chlorophyceae) from Montana, USA. Phycologia 54:316–320CrossRefGoogle Scholar
  35. Pancost RD, Taylor KWR, Inglis GN, Kennedy EM, Handley L, Hollis CJ, et al. (2013) Early Paleogene evolution of terrestrial climate in the SW Pacific, southern New Zealand. Geochem Geophys Geosyst 14:5413–5429CrossRefGoogle Scholar
  36. Pappas V, Miller SM (2009) Functional analysis of the Volvox carteri asymmetric division protein GlsA. Mech Dev 126:842–851CrossRefPubMedGoogle Scholar
  37. Parra OO, Gonzales M, Dellarossa V (1983) Manual taxonomico del fitoplancton de aguas continentales. V. Chlorophyceae. Parte 1. Editorial Universidad de Concepcion, ConcepcionGoogle Scholar
  38. Poole I, Cantrill D, Utescher T (2005) A multi-proxy approach to determine Antarctic terrestrial palaeoclimate during the Late Cretaceous and Early Tertiary. Palaeogeogr Palaeoclimatol Palaeoecol 222:95–121CrossRefGoogle Scholar
  39. Prescott GW (1955) Algae of the Panama Canal and its tributaries. 1. Flagellated organisms. Ohio J Sci 55:99–121Google Scholar
  40. Prochnik SE, Umen J, Nedelcu AM, Hallmann A, Miller SM, Nishii I, et al. (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226CrossRefPubMedPubMedCentralGoogle Scholar
  41. Pross J, Contreras L, Bijl PK, Greenwood DR, Bohaty SM, Schouten S, et al. (2012) Persistent near-tropical warmth on the Antarctic continent during the early Eocene epoch. Nature 488:73–77CrossRefPubMedGoogle Scholar
  42. Schmitt R, Fabry S, Kirk DL (1992) In search of molecular origins of cellular differentiation in Volvox and its relatives. Int Rev Cytol 139:189–265CrossRefPubMedGoogle Scholar
  43. Scotese CR (2001) Atlas of earth history. Vol. 1. Paleogeography. PALEOMAP Project, Arlington, TexasGoogle Scholar
  44. Senft WH, Hunchberger RA, Roberts KE (1981) Temperature dependence of growth and phosphorus uptake in two species of Volvox (Volvocales, Chlorophyta). J Phycol 17:323–329CrossRefGoogle Scholar
  45. Sheath RG, Hellebust JA (1978) Comparison of algae in the euplankton, tychoplankton, and periphyton of a tundra pond. Can J Bot 56:1472–1483CrossRefGoogle Scholar
  46. Sheath RG, Steinman AD (1982) A checklist of freshwater algae of the Northwest Territories, Canada. Can J Bot 60:1964–1997CrossRefGoogle Scholar
  47. Sleigh MA (1989) Protozoa and other protists. Edward Arnold, New YorkGoogle Scholar
  48. Smith GM (1944) A comparative study of the species of Volvox. Trans Am Microsc Soc 63:265–310CrossRefGoogle Scholar
  49. Starr RC (1968) Cellular differentiation in Volvox. Proc Natl Acad Sci U S A 59:1082–1088CrossRefPubMedPubMedCentralGoogle Scholar
  50. Starr RC (1970) Control of differentiation in Volvox. Dev Biol 4(suppl):59–100Google Scholar
  51. Starr RC (1972) Sexual reproduction in Volvox dissipatrix. Brit Phycol J 7:284Google Scholar
  52. Starr RC, O’Neil RM, Miller CE (1980) L-glutamic acid as a mediator of sexual morphogenesis in Volvox capensis. Proc Natl Acad Sci U S A 77:1025–1028CrossRefPubMedPubMedCentralGoogle Scholar
  53. Stein JR, Borden CA (1979) Checklist of freshwater algae of British Columbia. Syesis 12:3–39Google Scholar
  54. Talling JF, Sinada F, Taha OE, Sobhy EMH (2009) Phytoplankton: composition, development and productivity. In: Dumont HJ (ed) The Nile: origin, environments, limnology and human use. Springer, The Hague, pp. 431–462CrossRefGoogle Scholar
  55. Talling JF, Prowse GA (2010) Selective recruitment and resurgence of tropical river phytoplankton: evidence from the Nile system of lakes, rivers, reservoirs and ponds. Hydrobiologia 637:187–195CrossRefGoogle Scholar
  56. Ueki N, Matsunaga S, Inouye I, Hallmann A (2010) How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biol 8:103. doi: 10.1186/1741-7007-8-103 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Vande Berg WJ, Starr RC (1971) Structure, reproduction and differentiation in Volvox gigas and Volvox powersii. Arch Protistenkd 113:195–219Google Scholar
  58. Veevers JJ, Powell CMA, Roots SR (1991) Review of seafloor spreading around Australia. I. Synthesis of the patterns of spreading. Aust J Earth Sci 38:373–389CrossRefGoogle Scholar
  59. Whitford LA (1950) Some fresh-water algae from Mississippi. Castanea 15:117–123Google Scholar
  60. Whitford LA (1956) Additions to the fresh-water algae in North Carolina I. Trans Am Microsc Soc 75:196–203CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of EmbryologySaint-Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations