Development Genes and Evolution

, Volume 226, Issue 3, pp 187–196 | Cite as

Modularity and developmental stability in segmented animals: variation in translational asymmetry in geophilomorph centipedes

  • Yoland Savriama
  • Marco Vitulo
  • Sylvain Gerber
  • Vincent Debat
  • Giuseppe Fusco
Original Article
Part of the following topical collections:
  1. Size and Shape

Abstract

Does a modular body organization present a challenge for developmental control? We investigate the idea of a possible developmental cost of modularity by examining the relationship between modularity and developmental stability in a multi-segmented arthropod taxon: the geophilomorph centipedes. In a sample of eight species, we tested the correlation between developmental stability, estimated from measures of translational fluctuating asymmetry, and the number of trunk segments and some other morphological traits, both at the species and individual levels. We found sizeable differences in size and shape patterns of variation at the level of species. However, we did not find any clear evidence of correlation between fluctuating asymmetry and the number of trunk segments or the other morphological traits considered. Thus, our results provide no support to the idea of a possible trade-off between the cardinality of a modular system and the level of developmental precision in the phenotypic expression of its modules. The results of this exploratory study invite further investigations of patterns of translational fluctuating asymmetry in segmented animals and other modular organisms, as these have the potential to reveal features of developmental stability that cannot be captured by the study of bilateral asymmetry alone.

Keywords

Canalization Fluctuating asymmetry Geometric morphometrics Trade-offs 

References

  1. Aparicio JM (1998) Patterns of fluctuating asymmetry in developing primary feathers: a test of the compensational growth hypothesis. Proc R Soc B 265:2353–2357CrossRefPubMedCentralGoogle Scholar
  2. Astaurov BL (1930) Analyse der erblichen Störungsfälle der bilateralen Symmetrie. Z Indukt Abstamm Vererbungsl 55:183–262Google Scholar
  3. Berto D, Fusco G, Minelli A (1997) Segmental units and shape control in Chilopoda. Entomol Scand 51(Suppl):61–70Google Scholar
  4. Bonato L, Minelli A (2014) Chilopoda geophilomorpha of Europe: a revised list of species, with taxonomic and nomenclatorial notes. Zootaxa 3770:1–136CrossRefPubMedGoogle Scholar
  5. Bonato L, Edgecombe GD, Zapparoli M (2011) Chilopoda—taxonomic overview. In: Minelli A (ed) Treatise on zoology—anatomy, taxonomy, biology, vol 1, The Myriapoda. Brill, Leiden, pp 363–443Google Scholar
  6. Bonato L, Drago L, Murienne J (2014) Phylogeny of Geophilomorpha (Chilopoda) inferred from new morphological and molecular evidence. Cladistics 30:485–507CrossRefGoogle Scholar
  7. Brena C (2014) The embryoid development of Strigamia maritima and its bearing on post-embryonic segmentation of geophilomorph centipedes. Front Zool 11:58CrossRefGoogle Scholar
  8. Brena C (2015) Myriapoda. In: Wanninger (ed) Evolutionary developmental biology of invertebrates, 3: Ecdysozoa I: non-Tetraconata. Springer Verlag, Berlin, pp 141–189CrossRefGoogle Scholar
  9. Clarke GM (1998) The genetic basis of developmental stability. IV. Individual and population asymmetry parameters. Heredity 80:553–561CrossRefGoogle Scholar
  10. Clune J, Mouret JB, Lipson H (2013) The evolutionary origins of modularity. Proc R Soc B 280:20122863CrossRefPubMedPubMedCentralGoogle Scholar
  11. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at http://www.R-project.org/
  12. Debat V, David P (2001) Mapping phenotypes: canalization, plasticity and developmental stability. Trends Ecol Evol 16:555–561CrossRefGoogle Scholar
  13. Debat V, Peronnet F (2013) Asymmetric flies: the control of developmental noise in Drosophila. Fly 7:70–77CrossRefPubMedPubMedCentralGoogle Scholar
  14. Debat V, Bloyer S, Faradji F, Gidaszewski N, Navarro N, Orozco-terWengel P, Ribeiro V, Schlötterer C, Deutsch JS, Peronnet F (2011) Developmental stability: a major role for Cyclin G in Drosophila melanogaster. PLoS Genet 7, e1002314CrossRefPubMedPubMedCentralGoogle Scholar
  15. Del Latte L, Bortolin F, Rota-Stabelli O, Fusco G, Bonato L (2015) Molecular-based estimate of species number, phylogenetic relationships and divergence times for the genus Stenotaenia (Chilopoda, Geophilomorpha) in the Italian region. Zookeys 510:31–47CrossRefPubMedGoogle Scholar
  16. Félix MA, Barkoulas M (2015) Pervasive robustness in biological systems. Nat Rev Genet 16:483–496CrossRefPubMedGoogle Scholar
  17. Freeman DC, Graham JH, Emlen JM (1993) Developmental stability in plants: symmetries, stress and epigenesis. Genetica 89:97–119CrossRefGoogle Scholar
  18. Fusco G (2005) Trunk segment numbers and sequential segmentation in myriapods. Evol Dev 7:608–617CrossRefPubMedGoogle Scholar
  19. Fusco G, Minelli A (2000a) Developmental stability in geophilomorph centipedes. Fragm Faun 43(Suppl):73–82Google Scholar
  20. Fusco G, Minelli A (2000b) Measuring morphological complexity of segmented animals: centipedes as model systems. J Evol Biol 13:38–46CrossRefGoogle Scholar
  21. Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B 365:547–556CrossRefGoogle Scholar
  22. Fusco G, Minelli A (2013) Arthropod body segments and tagmata. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution, Molecules, development, morphology. Springer Verlag, Berlin, pp 197–221CrossRefGoogle Scholar
  23. Fusco G, Brena C, Minelli A (2000) Cellular processes in the growth of lithobiomorph centipedes (Chilopoda: Lithobiomorpha). A cuticular view. Zool Anz 239:91–102Google Scholar
  24. Fusco G, Leśniewska M, Congiu L, Bertorelle G (2015) Population genetic structure of a centipede species with high levels of developmental instability. PLoS ONE 10, e0126245CrossRefPubMedPubMedCentralGoogle Scholar
  25. Graham JH, Raz S, Hel-Or H, Nevo E (2010) Fluctuating asymmetry: methods, theory, and applications. Symmetry 2:466–540CrossRefGoogle Scholar
  26. Horneland EO, Meidell B (2009) Postembryonic development of Strigamia maritima (Leach, 1817) (Chilopoda: Geophilomorpha: Linotaeniidae) with emphasis on how to separate the different stadia. Soil Organ 81:373–386Google Scholar
  27. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefPubMedGoogle Scholar
  28. Kent JT, Mardia KV (2001) Shape, procrustes tangent projections and bilateral symmetry. Biometrika 88:469–485CrossRefGoogle Scholar
  29. Klaus AV, Schawaroch V (2006) Novel methodology utilizing confocal laser scanning microscopy for systematic analysis in arthropods (Insecta). Integr Comp Biol 46:207–214CrossRefPubMedGoogle Scholar
  30. Klingenberg CP (2003) A developmental perspective on developmental instability: theory, models and mechanisms. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, New York, pp 14–34Google Scholar
  31. Klingenberg CP (2015) Analyzing fluctuating asymmetry with geometric morphometrics: concepts, methods, and applications. Symmetry 7:843–934CrossRefGoogle Scholar
  32. Klingenberg CP, McIntyre GS (1998) Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52:1363–1375CrossRefGoogle Scholar
  33. Klingenberg CP, Nijhout HF (1998) Competition among growing organs and developmental control of morphological asymmetry. Proc R Soc Lond B 265:1135–1139CrossRefGoogle Scholar
  34. Klingenberg CP, Barluenga M, Meyer A (2002) Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56:1909–1920CrossRefPubMedGoogle Scholar
  35. Leamy L (1984) Morphometric studies in inbred and hybrid house mice. V. Directional and fluctuating asymmetry. Am Nat 123:579–593CrossRefGoogle Scholar
  36. Leamy L (1993) Morphological integration of fluctuating asymmetry in the mouse mandible. Genetica 89:139–153CrossRefGoogle Scholar
  37. Leśniewska M, Bonato L, Minelli A, Fusco G (2009) Trunk anomalies in the centipede Stigmatogaster subterranea provide insight into late-embryonic segmentation. Arthropod Struct Dev 38:417–426CrossRefPubMedGoogle Scholar
  38. Mardia KV, Bookstein FL, Moreton IJ (2000) Statistical assessment of bilateral symmetry of shapes. Biometrika 87:285–300CrossRefGoogle Scholar
  39. Minelli A, Fusco G (2004) Evo-devo perspectives on segmentation: model organisms, and beyond. Trends Ecol Evol 19:423–429CrossRefPubMedGoogle Scholar
  40. Minelli A, Fusco G (2013) Homology. In: Kampourakis K (ed) The philosophy of biology: a companion for educators. Springer Verlag, Berlin Heidelberg, pp 289–322CrossRefGoogle Scholar
  41. Moretto M, Minelli A, Fusco G (2015) Cell size versus body size in geophilomorph centipedes. Sci Nat 102:16CrossRefGoogle Scholar
  42. Murienne J, Edgecombe GD, Giribet G (2010) Including secondary structure, fossils and molecular dating in the centipede tree of life. Mol Phylogenet Evol 57:301–313CrossRefPubMedGoogle Scholar
  43. Nijhout HF, Davidowitz G (2003) Developmental perspectives on phenotypic variation, canalization, and fluctuating asymmetry. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, New York, pp 3–13Google Scholar
  44. Orme D, Freckelton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2013) Caper: comparative analyses of phylogenetics and evolution in R. Available at: http://CRAN.R-project.org/package=caper
  45. Palmer AR, Strobeck C (1986) Fluctuating asymmetry: measurement, analysis, patterns. Annu Rev Ecol Syst 17:391–421CrossRefGoogle Scholar
  46. Palmer AR, Strobeck C (2003) Fluctuating asymmetry analyses revisited. In: Polak M (ed) Developmental instability: causes and consequences. Oxford University Press, New York, pp 279–319Google Scholar
  47. Piscart C, Moreteau J-C, Beisel J-N (2005) Decrease of fluctuating asymmetry among larval instars in an aquatic, holometabolous insect. C R Biol 328:912–917CrossRefPubMedGoogle Scholar
  48. Polak M (ed) (2003) Developmental instability: causes and consequences. Oxford University Press, New YorkGoogle Scholar
  49. Raz S, Schwartz NP, Mienis HK, Nevo E, Graham JH (2012) Fluctuating helical asymmetry and morphology of snails (Gastropoda) in divergent microhabitats at ‘Evolution Canyons I and II’, Israel. PLoS ONE 7, e41840CrossRefPubMedPubMedCentralGoogle Scholar
  50. Rohlf FJ (2015) The TPS series of software. Hystrix 26:9–12Google Scholar
  51. Savriama Y, Klingenberg CP (2011) Beyond bilateral symmetry: geometric morphometric methods for any type of symmetry. BMC Evol Biol 11:280CrossRefPubMedPubMedCentralGoogle Scholar
  52. Savriama Y, Gómez JM, Perfectti F, Klingenberg CP (2012) Geometric morphometrics of corolla shape: dissecting components of symmetric and asymmetric variation in Erysimum mediohispanicum (Brassicaceae). New Phytol 196:945–954CrossRefPubMedGoogle Scholar
  53. Savriama Y, Stige LC, Gerber S, Pérez T, Alibert P, David B (2015) Impact of sewage pollution on two species of sea urchins in the Mediterranean Sea (Cortiou, France): radial asymmetry as a bioindicator of stress. Ecol Indic 54:39–47CrossRefGoogle Scholar
  54. Schlosser G, Wagner GP (eds) (2004) Modularity in development and evolution. University of Chicago Press, ChicagoGoogle Scholar
  55. Swaddle JP, Witter MS (1997) On the ontogeny of developmental stability in a stabilized trait. Proc R Soc Lond B 264:329–334CrossRefGoogle Scholar
  56. Turcato A, Fusco G, Minelli A (1995) The sternal pore areas of geophilomorph centipedes (Chilopoda: Geophilomorpha). Zool J Linn Soc 115:185–209CrossRefGoogle Scholar
  57. Whitlock M (1996) The heritability of fluctuating asymmetry and the genetic control of developmental stability. Proc R Soc B 263:849–853CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yoland Savriama
    • 1
  • Marco Vitulo
    • 2
  • Sylvain Gerber
    • 3
    • 4
  • Vincent Debat
    • 4
  • Giuseppe Fusco
    • 2
  1. 1.Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of BiologyUniversity of PadovaPadovaItaly
  3. 3.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  4. 4.Institut de Systématique, Évolution, Biodiversité – UMR 7205 – CNRS, UPMC, EPHE, Muséum National d’Histoire NaturelleSorbonne UniversitésParisFrance

Personalised recommendations