Development Genes and Evolution

, Volume 225, Issue 4, pp 207–219 | Cite as

Expression study of the hunchback ortholog in embryos of the onychophoran Euperipatoides rowelli

  • Franziska Anni FrankeEmail author
  • Georg Mayer
Original Article


Zinc finger transcription factors encoded by hunchback homologs play different roles in arthropods, including maternally mediated control, segmentation, and mesoderm and neural development. Knockdown experiments in spider and insect embryos have also revealed homeotic effects and gap phenotypes, the latter indicating a function of hunchback as a “gap gene”. Although the expression pattern of hunchback has been analysed in representatives of all four major arthropod groups (chelicerates, myriapods, crustaceans and insects), nothing is known about its expression in one of the closest arthropod relatives, the Onychophora (velvet worms). We therefore examined the expression pattern of hunchback in embryos of the onychophoran Euperipatoides rowelli. Our transcriptomic and phylogenetic analyses revealed only one hunchback ortholog in this species. The putative Hunchback protein contains all nine zinc finger domains known from other protostomes. We found no indication of maternally contributed transcripts of hunchback in early embryos of E. rowelli. Its initial expression occurs in the ectodermal tissue of the antennal segment, followed by the jaw, slime papilla and trunk segments in an anterior-to-posterior progression. Later, hunchback expression is seen in the mesoderm of the developing limbs. A second “wave” of expression commences later in development in the antennal segment and continues posteriorly along each developing nerve cord. This expression is restricted to the neural tissues and does not show any segmental pattern. These findings are in line with the ancestral roles of hunchback in mesoderm and neural development, whereas we find no evidence for a putative function of hunchback as a “gap gene” in Onychophora.


Arthropods “Gap gene” Hunchback Mesoderm Nervous system Onychophora 



We are thankful to the members of the Mayer laboratory for animal husbandry. We acknowledge Dave M. Rowell, Ivo de Sena Oliveira, Sandra Treffkorn and Michael Gerth for collecting specimens and to Noel N. Tait for his help with permits. We thank Lars Hering for providing transcriptomic data, Nicole Naumann and Isabell Schumann for laboratory support, Lars Hering and Michael Gerth for help with software applications, and Vladimir Gross for proofreading the manuscript and providing useful comments. The staff of Forests NSW (New South Wales, Australia) is gratefully acknowledged for providing the collecting permits. We thank the two anonymous reviewers for their helpful comments. This work was supported by the Emmy Noether Programme of the German Research Foundation (DFG; grant Ma 4147/3-1 to G.M.).

Supplementary material

427_2015_505_Fig8_ESM.gif (253 kb)
Supplementary figure S1

(GIF 253 kb)

427_2015_505_MOESM1_ESM.tif (1.2 mb)
High resolution image (TIFF 1241 kb)
427_2015_505_Fig9_ESM.gif (199 kb)
Supplementary figure S2

(GIF 198 kb)

427_2015_505_MOESM2_ESM.tif (941 kb)
High resolution image (TIFF 943 kb)
427_2015_505_Fig10_ESM.gif (358 kb)
Supplementary figure S3

(GIF 357 kb)

427_2015_505_MOESM3_ESM.tif (4.6 mb)
High resolution image (TIFF 4745 kb)
427_2015_505_Fig11_ESM.gif (331 kb)
Supplementary figure S4

(GIF 330 kb)

427_2015_505_MOESM4_ESM.tif (5.7 mb)
High resolution image (TIFF 5873 kb)
427_2015_505_Fig12_ESM.gif (376 kb)
Supplementary figure S5

(GIF 375 kb)

427_2015_505_MOESM5_ESM.tif (5.1 mb)
High resolution image (TIFF 5261 kb)
427_2015_505_Fig13_ESM.gif (193 kb)
Supplementary figure S6

(GIF 192 kb)

427_2015_505_MOESM6_ESM.tif (2.1 mb)
High resolution image (TIFF 2147 kb)
427_2015_505_Fig14_ESM.gif (90 kb)
Supplementary figure S7

(GIF 89 kb)

427_2015_505_MOESM7_ESM.tif (420 kb)
High resolution image (TIFF 419 kb)
427_2015_505_Fig15_ESM.gif (98 kb)
Supplementary figure S8

(GIF 98 kb)

427_2015_505_MOESM8_ESM.tif (442 kb)
High resolution image (TIFF 443 kb)


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723. doi: 10.1109/tac.1974.1100705 CrossRefGoogle Scholar
  2. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi: 10.1093/nar/25.17.3389 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Baer A, Mayer G (2012) Comparative anatomy of slime glands in Onychophora (velvet worms). J Morphol 273:1079–1088. doi: 10.1002/jmor.20044 PubMedCrossRefGoogle Scholar
  4. Chang CC, Hsiao YM, Huang TY, Cook CE, Shigenobu S, Chang TH (2013) Noncanonical expression of caudal during early embryogenesis in the pea aphid Acyrthosiphon pisum: maternal cad-driven posterior development is not conserved. Insect Mol Biol 22:442–455. doi: 10.1111/imb.12035 PubMedCrossRefGoogle Scholar
  5. Chipman AD, Stollewerk A (2006) Specification of neural precursor identity in the geophilomorph centipede Strigamia maritima. Dev Biol 290:337–350. doi: 10.1016/j.ydbio.2005.11.029 PubMedCrossRefGoogle Scholar
  6. Crombach A, García-Solache MA, Jaeger J (2014) Evolution of early development in dipterans: reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae). BioSystems 123:74–85. doi: 10.1016/j.biosystems.2014.06.003 PubMedCrossRefGoogle Scholar
  7. Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164−1165Google Scholar
  8. Dean D, Himes CM, Behrman E, Savage RM (2009) Hunchback-like protein is expressed in cleavage blastomeres, gastrula epithelium, and ciliary structures in gastropods. Biol Bull 217:189–201PubMedGoogle Scholar
  9. Duncan EJ, Leask MP, Dearden PK (2013) The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Dev Biol 377:262–274. doi: 10.1016/j.ydbio.2013.01.036 PubMedCrossRefGoogle Scholar
  10. Eriksson BJ, Stollewerk A (2010) Expression patterns of neural genes in Euperipatoides kanangrensis suggest divergent evolution of onychophoran and euarthropod neurogenesis. Proc Natl Acad Sci U S A 107:22576–22581. doi: 10.1073/pnas.1008822108 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Eriksson BJ, Tait NN, Budd GE, Akam M (2009) The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol 219:249–264. doi: 10.1007/s00427-009-0287-7 PubMedCrossRefGoogle Scholar
  12. Fay DS, Stanley HM, Han M, Wood WB (1999) A Caenorhabditis elegans homologue of hunchback is required for late stages of development but not early embryonic patterning. Dev Biol 205:240–253. doi: 10.1006/dbio.1998.9096 PubMedCrossRefGoogle Scholar
  13. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. doi: 10.1093/nar/gkt1223 PubMedCentralPubMedCrossRefGoogle Scholar
  14. Franke FA, Mayer G (2014) Controversies surrounding segments and parasegments in Onychophora: insights from the expression patterns of four “segment polarity genes” in the peripatopsid Euperipatoides rowelli. PLoS ONE 9, e114383. doi: 10.1371/journal.pone.0114383 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Franke FA, Schumann I, Hering L, Mayer G (2015) Phylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamily. Evol Dev 17:3–20. doi: 10.1111/ede.12110 PubMedCrossRefGoogle Scholar
  16. Georgopoulos K, Moore D, Derfler B (1992) Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258:808–812. doi: 10.1126/science.1439790 PubMedCrossRefGoogle Scholar
  17. Goltsev Y, Hsiong W, Lanzaro G, Levine M (2004) Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 275:435–446. doi: 10.1016/j.ydbio.2004.08.021 PubMedCrossRefGoogle Scholar
  18. He Z-B, Cao Y-Q, Yin Y-P, Wang Z-K, Chen B, Peng G-X, Xia Y-X (2006) Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Develop Growth Differ 48:439–445. doi: 10.1111/j.1440-169X.2006.00881.x CrossRefGoogle Scholar
  19. Hering L, Henze MJ, Kohler M, Kelber A, Bleidorn C, Leschke M, Nickel B, Meyer M, Kircher M, Sunnucks P, Mayer G (2012) Opsins in Onychophora (velvet worms) suggest a single origin and subsequent diversification of visual pigments in arthropods. Mol Biol Evol 29:3451–3458. doi: 10.1093/molbev/mss148 PubMedCrossRefGoogle Scholar
  20. Huang TY, Cook CE, Davis GK, Shigenobu S, Chen RPY, Chang CC (2010) Anterior development in the parthenogenetic and viviparous form of the pea aphid, Acyrthosiphon pisum: hunchback and orthodenticle expression. Insect Mol Biol 19:75–85. doi: 10.1111/j.1365-2583.2009.00940.x PubMedCrossRefGoogle Scholar
  21. Isshiki T, Pearson B, Holbrook S, Doe CQ (2001) Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106:511–521. doi: 10.1016/S0092-8674(01)00465-2 PubMedCrossRefGoogle Scholar
  22. Iwasa JH, Suver DW, Savage RM (2000) The leech hunchback protein is expressed in the epithelium and CNS but not in the segmental precursor lineages. Dev Genes Evol 210:277–288. doi: 10.1007/s004270050315 PubMedCrossRefGoogle Scholar
  23. Janssen R, Budd GE, Damen WGM (2011) Gene expression suggests conserved mechanisms patterning the heads of insects and myriapods. Dev Biol 357:64–72. doi: 10.1016/j.ydbio.2011.05.670 PubMedCrossRefGoogle Scholar
  24. Janssens H, Siggens K, Cicin-Sain D, Jimenez-Guri E, Musy M, Akam M, Jaeger J (2014) A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera: Psychodidae) blastoderm embryos. EvoDevo 5:1PubMedCentralPubMedCrossRefGoogle Scholar
  25. Kambadur R, Koizumi K, Stivers C, Nagle J, Poole SJ, Odenwald WF (1998) Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev 12:246–260. doi: 10.1101/gad.12.2.246
  26. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066. doi: 10.1093/nar/gkf436 PubMedCentralPubMedCrossRefGoogle Scholar
  28. Kerner P, Zelada González F, Gouar M, Ledent V, Arendt D, Vervoort M (2006) The expression of a hunchback ortholog in the polychaete annelid Platynereis dumerilii suggests an ancestral role in mesoderm development and neurogenesis. Dev Genes Evol 216:821–828. doi: 10.1007/s00427-006-0100-9 PubMedCrossRefGoogle Scholar
  29. Kim HS, Murphy T, Xia J, Caragea D, Park Y, Beeman RW, Lorenzen MD, Butcher S, Manak JR, Brown SJ (2010) BeetleBase in 2010: revisions to provide comprehensive genomic information for Tribolium castaneum. Nucleic Acids Res 38:D437–D442. doi: 10.1093/nar/gkp807 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Kontarakis Z, Copf T, Averof M (2006) Expression of hunchback during trunk segmentation in the branchiopod crustacean Artemia franciscana. Dev Genes Evol 216:89–93. doi: 10.1007/s00427-005-0030-y PubMedCrossRefGoogle Scholar
  31. Lartillot N, Rodrigue N, Stubbs D, Richer J (2013) PhyloBayes MPI: phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol 62:611–615. doi: 10.1093/sysbio/syt022 PubMedCrossRefGoogle Scholar
  32. Lehmann R, Nüsslein-Volhard C (1987) hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Dev Biol 119:402–417. doi: 10.1016/0012-1606(87)90045-5 PubMedCrossRefGoogle Scholar
  33. Letunic I, Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res 39:475–478. doi: 10.1093/nar/gkr201 CrossRefGoogle Scholar
  34. Letunic I, Doerks T, Bork P (2014) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. doi: 10.1093/nar/gku949 Google Scholar
  35. Liu PZ, Kaufman TC (2004) hunchback is required for suppression of abdominal identity, and for proper germband growth and segmentation in the intermediate germband insect Oncopeltus fasciatus. Development 131:1515–1527. doi: 10.1242/dev.01046 PubMedCrossRefGoogle Scholar
  36. Mao J, Liu C, Zeng F (2013) Hunchback is required for abdominal identity suppression and germband growth in the parthenogenetic embryogenesis of the pea aphid, Acyrthosiphon pisum. Arch Insect Biochem Physiol 84:209–221. doi: 10.1002/arch.21137 PubMedCrossRefGoogle Scholar
  37. Marques-Souza H, Aranda M, Tautz D (2008) Delimiting the conserved features of hunchback function for the trunk organization of insects. Development 135:881–888. doi: 10.1242/dev.018317 PubMedCrossRefGoogle Scholar
  38. Mayer G, Whitington PM (2009) Velvet worm development links myriapods with chelicerates. Proc R Soc B 276:3571–3579. doi: 10.1098/rspb.2009.0950 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Mayer G, Franke FA, Treffkorn S, Gross V, Oliveira IS (2015) Onychophora. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates. Springer, Berlin, p 53–98 (in press)Google Scholar
  40. Mito T, Sarashina I, Zhang H, Iwahashi A, Okamoto H, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S (2005) Non-canonical functions of hunchback in segment patterning of the intermediate germ cricket Gryllus bimaculatus. Development 132:2069–2079. doi: 10.1242/dev.01784 PubMedCrossRefGoogle Scholar
  41. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801. doi: 10.1038/287795a0 PubMedCrossRefGoogle Scholar
  42. Patel NH, Hayward DC, Lall S, Pirkl NR, DiPietro D, Ball EE (2001) Grasshopper hunchback expression reveals conserved and novel aspects of axis formation and segmentation. Development 128:3459–3472PubMedGoogle Scholar
  43. Perdomo J, Crossley M (2002) The Ikaros family protein Eos associates with C-terminal-binding protein corepressors. Eur J Biochem 269:5885–5892. doi: 10.1046/j.1432-1033.2002.03313.x PubMedCrossRefGoogle Scholar
  44. Pinnell J, Lindeman PS, Colavito S, Lowe C, Savage RM (2006) The divergent roles of the segmentation gene hunchback. Integr Comp Biol 46:519–532. doi: 10.1093/icb/icj054 PubMedCrossRefGoogle Scholar
  45. Pultz MA, Westendorf L, Gale SD, Hawkins K, Lynch J, Pitt JN, Reeves NL, Yao JCY, Small S, Desplan C, Leaf DS (2005) A major role for zygotic hunchback in patterning the Nasonia embryo. Development 132:3705–3715. doi: 10.1242/dev.01939 PubMedCrossRefGoogle Scholar
  46. Robson EA, Lockwood AP, Ralph R (1966) Composition of blood in Onychophora. Nature 209:533. doi: 10.1038/209533a0 CrossRefGoogle Scholar
  47. Savage RM, Shankland M (1996) Identification and characterization of a hunchback Orthologue, Lzf2, and its expression during leech embryogenesis. Dev Biol 175:205–217. doi: 10.1006/dbio.1996.0108
  48. Schröder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621–625. doi: 10.1038/nature01536 PubMedCrossRefGoogle Scholar
  49. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864PubMedCentralPubMedCrossRefGoogle Scholar
  50. Schwager EE, Pechmann M, Feitosa NM, McGregor AP, Damen WGM (2009) hunchback functions as a segmentation gene in the spider Achaearanea tepidariorum. Curr Biol 19:1333–1340. doi: 10.1016/j.cub.2009.06.061 PubMedCrossRefGoogle Scholar
  51. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi: 10.1093/bioinformatics/btl446 PubMedCrossRefGoogle Scholar
  52. Sullivan-Brown J, Bisher ME, Burdine RD (2011) Embedding, serial sectioning and staining of zebrafish embryos using JB-4 resin. Nat Protoc 6:46–55. doi: 10.1038/nprot.2010.165 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the location of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85. doi: 10.1007/bf00291041
  54. Tautz D, Lehmann R, Schnurch H, Schuh R, Seifert E, Kienlin A, Jones K, Jäckle H (1987) Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327:383–389. doi: 10.1038/327383a0 CrossRefGoogle Scholar
  55. Treffkorn S, Mayer G (2013) Expression of the decapentaplegic ortholog in embryos of the onychophoran Euperipatoides rowelli. Gene Expr Patterns 13:384–394. doi: 10.1016/j.gep.2013.07.004 PubMedCrossRefGoogle Scholar
  56. Walker MH, Tait NN (2004) Studies of embryonic development and the reproductive cycle in ovoviviparous Australian Onychophora (Peripatopsidae). J Zool 264:333–354. doi: 10.1017/s0952836904005837 CrossRefGoogle Scholar
  57. Werbrock AH, Meiklejohn DA, Sainz A, Iwasa JH, Savage RM (2001) A polychaete hunchback ortholog. Dev Biol 235:476–488. doi: 10.1006/dbio.2001.0272 PubMedCrossRefGoogle Scholar
  58. Wheeler T, Clements J, Finn R (2014) Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinf 15:7. doi: 10.1186/1471-2105-15-7 CrossRefGoogle Scholar
  59. Whitington PM, Mayer G (2011) The origins of the arthropod nervous system: insights from the Onychophora. Arthropod Struct Dev 40:193–209. doi: 10.1016/j.asd.2011.01.006 PubMedCrossRefGoogle Scholar
  60. Wilson MJ, Dearden PK (2011) Diversity in insect axis formation: two orthodenticle genes and hunchback act in anterior patterning and influence dorsoventral organization in the honeybee (Apis mellifera). Development 138:3497–3507. doi: 10.1242/dev.067926 PubMedCrossRefGoogle Scholar
  61. Wolff C, Sommer R, Schroder R, Glaser G, Tautz D (1995) Conserved and divergent expression aspects of the Drosophila segmentation gene hunchback in the short germ band embryo of the flour beetle Tribolium. Development 121:4227–4236PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Animal Evolution & Development, Institute of BiologyUniversity of LeipzigLeipzigGermany
  2. 2.Department of Zoology, Institute of BiologyUniversity of KasselKasselGermany

Personalised recommendations