Advertisement

Development Genes and Evolution

, Volume 224, Issue 2, pp 65–77 | Cite as

Patterns of molecular evolution of the germ line specification gene oskar suggest that a novel domain may contribute to functional divergence in Drosophila

  • Abha Ahuja
  • Cassandra G. Extavour
Original Article

Abstract

In several metazoans including flies of the genus Drosophila, germ line specification occurs through the inheritance of maternally deposited cytoplasmic determinants, collectively called germ plasm. The novel insect gene oskar is at the top of the Drosophila germ line specification pathway, and also plays an important role in posterior patterning. A novel N-terminal domain of oskar (the Long Oskar domain) evolved in Drosophilids, but the role of this domain in oskar functional evolution is unknown. Trans-species transgenesis experiments have shown that oskar orthologs from different Drosophila species have functionally diverged, but the underlying selective pressures and molecular changes have not been investigated. As a first step toward understanding how Oskar function could have evolved, we applied molecular evolution analysis to oskar sequences from the completely sequenced genomes of 16 Drosophila species from the Sophophora subgenus, Drosophila virilis and Drosophila immigrans. We show that overall, this gene is subject to purifying selection, but that individual predicted structural and functional domains are subject to heterogeneous selection pressures. Specifically, two domains, the Drosophila-specific Long Osk domain and the region that interacts with the germ plasm protein Lasp, are evolving at a faster rate than other regions of oskar. Further, we provide evidence that positive selection may have acted on specific sites within these two domains on the D. virilis branch. Our domain-based analysis suggests that changes in the Long Osk and Lasp-binding domains are strong candidates for the molecular basis of functional divergence between the Oskar proteins of D. melanogaster and D. virilis. This molecular evolutionary analysis thus represents an important step towards understanding the role of an evolutionarily and developmentally critical gene in germ plasm evolution and assembly.

Keywords

Drosophila Positive selection Oskar Germ line specification Germ plasm Novelty 

Notes

Acknowledgments

Thanks to Paul Macdonald for the plasmid containing the D. virilis oskar cDNA, to John Srouji for Sanger sequencing and discussion of the results, to Victor Zeng and Amit Indap for assistance with preliminary analyses, and to Extavour lab members for discussion of the manuscript. This work was partly supported by NSF grant IOS-0817678 to CGE and funds from Harvard University.

Competing interests

The authors declare that they have no competing interests.

Author contributions

AA conceived of the study, created alignments, and performed evolutionary rate analyses. CGE assisted with study design and performed analyses of amino acid physicochemical properties and phylogenetic distribution of germ plasm morphology. Both authors wrote and approved the final manuscript.

Supplementary material

427_2013_463_MOESM1_ESM.pdf (99 kb)
Online Resource 1 Nucleotide sequences and accessions of sequences of oskar orthologs used for analyses. (PDF 99.1 KB)
427_2013_463_MOESM2_ESM.pdf (297 kb)
Online Resource 2 Oskar amino acid alignment generated with sequences from 18 Drosophilids using the MUSCLE MSA, and the results of multiple PAML analyses of this alignment. (PDF 296 kb)
427_2013_463_MOESM3_ESM.pdf (306 kb)
Online Resource 3 Oskar amino acid alignment generated with sequences from 18 Drosophilids using the PRANK MSA, and the results of multiple PAML analyses of this alignment. (PDF 306 kb)
427_2013_463_MOESM4_ESM.pdf (170 kb)
Online Resource 4 Amino acid alignments of conserved sequence blocks from specific predicted structural and interaction Oskar domains from 18 Drosophilids using the PRANK MSA, and the results of the PAML analysis of these alignments. (PDF 170 kb)
427_2013_463_MOESM5_ESM.pdf (192 kb)
Online Resource 5 Amino acid alignments of Oskar from the five melanogaster subgroup Drosophila species using the MUSCLE MSA, and the results of multiple PAML analyses of this alignment. (PDF 192 kb)
427_2013_463_MOESM6_ESM.pdf (173 kb)
Online Resource 6 Amino acid alignments of specific predicted structural and interaction Oskar domains from seven Drosophilids (melanogaster subgroup members plus D. virilis and D. immigrans) using the PRANK MSA, and the results of multiple PAML analyses of these alignments. (PDF 173 kb)
427_2013_463_MOESM7_ESM.pdf (102 kb)
Online Resource 7 Clustal alignment of the amino acid translation of the three D. virilis alleles used in this study: (1) annotated from genomic sequence; NCBI accession XM_002053233.1; (2) cDNA sequence reported by Webster et al. (1994) (“Macdonald allele”); NCBI accession L22556.1; and (3) cDNA sequence obtained from Macdonald lab and verified by Sanger sequencing. Residues that are different between the different alleles and/or under positive selection are indicated. (PDF 101 kb)
427_2013_463_MOESM8_ESM.pdf (135 kb)
Online Resource 8 Amino acid alignments of the Long Osk domain from 18 Drosophilids including the D. virilis allele sequence from Webster et al. (1994) using the MUSCLE MSA, and the results of multiple PAML analyses of these alignments. (PDF 134 kb)
427_2013_463_MOESM9_ESM.pdf (149 kb)
Online Resource 9 Amino acid alignments of the Long Osk and Lasp-binding domains from 18 Drosophilids including the D. virilis allele sequence from Webster et al. (1994) using the PRANK MSA, and the results of multiple PAML analyses of these alignments. (PDF 148 kb)
427_2013_463_MOESM10_ESM.pdf (360 kb)
Online Resource 10 Phylogenetic distribution of germ plasm morphology in Drosophila species for which data are available, as determined by histology and electron microscopy (Mahowald 1962, 1968; Counce 1963). In the unipolar morphology all or most germ granules are aggregated into a single, large perinuclear body. In the perinuclear morphology, germ granules are aggregated into multiple perinuclear bodies distributed over the cytoplasmic face of nuclear membrane. In the dispersed morphology, observed only in D. melanogaster, some germ granules are perinuclear and others are distributed throughout the cytoplasm. Species included in the present molecular evolution analysis are indicated in bold face; colored text (red/blue) indicates functional conservation of oskar with respect to germ plasm assembly in D. melanogaster (Webster et al. 1994; Jones and Macdonald 2007). No sequence data are currently publicly available for the remaining species shown, with the exception of D. willistoni, whose oskar sequence was incomplete and excluded from the present analysis (see Methods for details). Phylogenetic relationships from (Oliveira et al. 2012; Da Lage et al. 2006; van der Linde et al. 2010; Robe et al. 2005). (PDF 359 kb)

References

  1. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. doi: 10.1093/nar/gkq291, 38 (Web Server issue):W7-13PubMedCentralPubMedGoogle Scholar
  2. Anantharaman V, Zhang D, Aravind L (2010) OST-HTH: a novel predicted RNA-binding domain. Biol Direct 5:13. doi: 10.1186/1745-6150-5-13 PubMedCentralPubMedCrossRefGoogle Scholar
  3. Anisimova M, Yang Z (2007) Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol 24(5):1219–1228. doi: 10.1093/molbev/msm042 PubMedCrossRefGoogle Scholar
  4. Anne J (2010) Targeting and anchoring Tudor in the pole plasm of the Drosophila Oocyte. PLoS ONE 5(12):e14362. doi: 10.1371/journal.pone.0014362 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Babu K, Cai Y, Bahri S, Yang X, Chia W (2004) Roles of Bifocal, Homer, and F-actin in anchoring Oskar to the posterior cortex of Drosophila oocytes. Genes Dev 18(2):138–143. doi: 10.1101/gad.282604 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Blackburne BP, Whelan S (2013) Class of multiple sequence alignment algorithm affects genomic analysis. Mol Biol Evol 30(3):642–653. doi: 10.1093/molbev/mss256 PubMedCrossRefGoogle Scholar
  7. Blackstone NW, Jasker BD (2003) Phylogenetic considerations of clonality, coloniality, and, mode of germline development in animals. J Exp Zool B Mol Dev Evol 297B(1):35–47CrossRefGoogle Scholar
  8. Breitwieser W, Markussen F-H, Horstmann H, Ephrussi A (1996) Oskar protein interaction with Vasa represents an essential step in polar granule assembly. Genes Dev 10:2179–2188PubMedCrossRefGoogle Scholar
  9. Callebaut I, Mornon J-P (2010) LOTUS, a new domain associated with small RNA pathways in the germline. Bioinformatics 26(9):1140–1144. doi: 10.1093/bioinformatics/btq122 PubMedCrossRefGoogle Scholar
  10. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17(4):540–552PubMedCrossRefGoogle Scholar
  11. Cavey M, Hijal S, Zhang X, Suter B (2005) Drosophila valois encodes a divergent WD protein that is required for Vasa localization and Oskar protein accumulation. Development 132(3):459–468PubMedCrossRefGoogle Scholar
  12. Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, Kaufman TC, Kellis M, Gelbart W, Iyer VN, Pollard DA, Sackton TB, Larracuente AM, Singh ND, Abad JP, Abt DN, Adryan B, Aguade M, Akashi H, Anderson WW, Aquadro CF, Ardell DH, Arguello R, Artieri CG, Barbash DA, Barker D, Barsanti P, Batterham P, Batzoglou S, Begun D, Bhutkar A, Blanco E, Bosak SA, Bradley RK, Brand AD, Brent MR, Brooks AN, Brown RH, Butlin RK, Caggese C, Calvi BR, Bernardo de Carvalho A, Caspi A, Castrezana S, Celniker SE, Chang JL, Chapple C, Chatterji S, Chinwalla A, Civetta A, Clifton SW, Comeron JM, Costello JC, Coyne JA, Daub J, David RG, Delcher AL, Delehaunty K, Do CB, Ebling H, Edwards K, Eickbush T, Evans JD, Filipski A, Findeiss S, Freyhult E, Fulton L, Fulton R, Garcia ACL, Gardiner A, Garfield DA, Garvin BE, Gibson G, Gilbert D, Gnerre S, Godfrey J, Good R, Gotea V, Gravely B, Greenberg AJ, Griffiths-Jones S, Gross S, Guigo R, Gustafson EA, Haerty W, Hahn MW, Halligan DL, Halpern AL, Halter GM, Han MV, Heger A, Hillier L, Hinrichs AS, Holmes I, Hoskins RA, Hubisz MJ, Hultmark D, Huntley MA, Jagadeeshan S, Jeck WR, Johnson J, Jones CD, Jordan WC, Karpen GH, Kataoka E, Keightley PD, Kheradpour P, Kirkness EF, Koerich LB, Kristiansen K, Kudrna D, Kulathinal RJ, Kumar S, Kwok R, Lander E, Langley CH, Lapoint R, Lazzaro BP, Lee S-J, Levesque L, Li R, Lin C-F, Lin MF, Lindblad-Toh K, Llopart A, Long M, Low L, Lozovsky E, Lu J, Luo M, Machado CA, Makalowski W, Marzo M, Matsuda M, Matzkin L, McAllister B, McBride CS, McKernan B, McKernan K, Mendez-Lago M, Minx P, Mollenhauer MU, Montooth K, Mount SM, Mu X, Myers E, Negre B, Newfeld S, Nielsen R, Noor MAF, O’Grady P, Pachter L, Papaceit M, Parisi MJ, Parisi M, Parts L, Pedersen JS, Pesole G, Phillippy AM, Ponting CP, Pop M, Porcelli D, Powell JR, Prohaska S, Pruitt K, Puig M, Quesneville H, Ram KR, Rand D, Rasmussen MD, Reed LK, Reenan R, Reily A, Remington KA, Rieger TT, Ritchie MG, Robin C, Rogers Y-H, Rohde C, Rozas J, Rubenfield MJ, Ruiz A, Russo S, Salzberg SL, Sanchez-Gracia A, Saranga DJ, Sato H, Schaeffer SW, Schatz MC, Schlenke T, Schwartz R, Segarra C, Singh RS, Sirot L, Sirota M, Sisneros NB, Smith CD, Smith TF, Spieth J, Stage DE, Stark A, Stephan W, Strausberg RL, Strempel S, Sturgill D, Sutton G, Sutton GG, Tao W, Teichmann S, Tobari YN, Tomimura Y, Tsolas JM, Valente VLS, Venter E, Venter JC, Vicario S, Vieira FG, Vilella AJ, Villasante A, Walenz B, Wang J, Wasserman M, Watts T, Wilson D, Wilson RK, Wing RA, Wolfner MF, Wong A, Wong GK-S, Wu C-I, Wu G, Yamamoto D, Yang H-P, Yang S-P, Yorke JA, Yoshida K, Zdobnov E, Zhang P, Zhang Y, Zimin AV, Baldwin J, Abdouelleil A, Abdulkadir J, Abebe A, Abera B, Abreu J, Acer SC, Aftuck L, Alexander A, An P, Anderson E, Anderson S, Arachi H, Azer M, Bachantsang P, Barry A, Bayul T, Berlin A, Bessette D, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Bourzgui I, Brown A, Cahill P, Channer S, Cheshatsang Y, Chuda L, Citroen M, Collymore A, Cooke P, Costello M, D’Aco K, Daza R, De Haan G, DeGray S, DeMaso C, Dhargay N, Dooley K, Dooley E, Doricent M, Dorje P, Dorjee K, Dupes A, Elong R, Falk J, Farina A, Faro S, Ferguson D, Fisher S, Foley CD, Franke A, Friedrich D, Gadbois L, Gearin G, Gearin CR, Giannoukos G, Goode T, Graham J, Grandbois E, Grewal S, Gyaltsen K, Hafez N, Hagos B, Hall J, Henson C, Hollinger A, Honan T, Huard MD, Hughes L, Hurhula B, Husby ME, Kamat A, Kanga B, Kashin S, Khazanovich D, Kisner P, Lance K, Lara M, Lee W, Lennon N, Letendre F, LeVine R, Lipovsky A, Liu X, Liu J, Liu S, Lokyitsang T, Lokyitsang Y, Lubonja R, Lui A, MacDonald P, Magnisalis V, Maru K, Matthews C, McCusker W, McDonough S, Mehta T, Meldrim J, Meneus L, Mihai O, Mihalev A, Mihova T, Mittelman R, Mlenga V, Montmayeur A, Mulrain L, Navidi A, Naylor J, Negash T, Nguyen T, Nguyen N, Nicol R, Norbu C, Norbu N, Novod N, O’Neill B, Osman S, Markiewicz E, Oyono OL, Patti C, Phunkhang P, Pierre F, Priest M, Raghuraman S, Rege F, Reyes R, Rise C, Rogov P, Ross K, Ryan E, Settipalli S, Shea T, Sherpa N, Shi L, Shih D, Sparrow T, Spaulding J, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Strader C, Tesfaye S, Thomson T, Thoulutsang Y, Thoulutsang D, Topham K, Topping I, Tsamla T, Vassiliev H, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Young G, Yu Q, Zembek L, Zhong D, Zimmer A, Zwirko Z, Jaffe DB, Alvarez P, Brockman W, Butler J, Chin C, Grabherr M, Kleber M, Mauceli E, MacCallum I (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature 450(7167):203–218. doi: 10.1038/nature06341 PubMedCrossRefGoogle Scholar
  13. Counce SJ (1963) Developmental morphology of polar granules in Drosophila including observations on pole cell behavior and distribution during embryogenesis. J Morphol 112(2):129–145CrossRefGoogle Scholar
  14. Da Lage JL, Kergoat GJ, Maczkowiak F, Silvain FF, Cariou ML, Lachaise D (2006) A phylogeny of Drosophilidae using the Amyrel gene: questioning the Drosophila melanogaster species group boundaries. J Zool Syst Evol Res 45(1):47–63CrossRefGoogle Scholar
  15. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma 5:113. doi: 10.1186/1471-2105-5-113 CrossRefGoogle Scholar
  16. Ephrussi A, Lehmann R (1992) Induction of germ cell formation by oskar. Nature 358(6385):387–392PubMedCrossRefGoogle Scholar
  17. Ephrussi A, Dickinson LK, Lehmann R (1991) Oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell 66(1):37–50PubMedCrossRefGoogle Scholar
  18. Ewen-Campen B, Schwager EE, Extavour CG (2010) The molecular machinery of germ line specification. Mol Reprod Dev 77(1):3–18PubMedCrossRefGoogle Scholar
  19. Ewen-Campen B, Srouji JR, Schwager EE, Extavour CG (2012) oskar predates the evolution of germ plasm in insects. Curr Biol 22(23):2278–2283PubMedCrossRefGoogle Scholar
  20. Extavour CG, Akam ME (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130(24):5869–5884PubMedCrossRefGoogle Scholar
  21. Gaunt MW, Miles MA (2002) An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol Biol Evol 19(5):748–761PubMedCrossRefGoogle Scholar
  22. Gharib WH, Robinson-Rechavi M (2013) The branch-site test of positive selection is surprisingly robust but lacks power under synonymous substitution saturation and variation in GC. Mol Biol Evol 30(7):1675–1686. doi: 10.1093/molbev/mst062 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Goltsev Y, Hsiong W, Lanzaro G, Levine M (2004) Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos. Dev Biol 275(2):435–446PubMedCrossRefGoogle Scholar
  24. Jones JR, Macdonald PM (2007) Oskar controls morphology of polar granules and nuclear bodies in Drosophila. Development 134(2):233–236PubMedCrossRefGoogle Scholar
  25. Juhn J, James AA (2006) oskar gene expression in the vector mosquitoes, Anopheles gambiae and Aedes aegypti. Insect Mol Biol 15(3):363–372PubMedCrossRefGoogle Scholar
  26. Juhn J, Marinotti O, Calvo E, James AA (2008) Gene structure and expression of nanos (nos) and oskar (osk) orthologues of the vector mosquito, Culex quinquefasciatus. Insect Mol Biol 17(5):545–552PubMedCentralPubMedCrossRefGoogle Scholar
  27. Keller O, Kollmar M, Stanke M, Waack S (2011) A novel hybrid gene prediction method employing protein multiple sequence alignments. Bioinformatics 27(6):757–763. doi: 10.1093/bioinformatics/btr010 PubMedCrossRefGoogle Scholar
  28. Kopp A (2006) Basal relationships in the Drosophila melanogaster species group. Mol Phylogenet Evol 39(3):787–798. doi: 10.1016/j.ympev.2006.01.029 PubMedCrossRefGoogle Scholar
  29. Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND, Sturgill D, Zhang Y, Oliver B, Clark AG (2008) Evolution of protein-coding genes in Drosophila. Trends Genet 24(3):114–123. doi: 10.1016/j.tig.2007.12.001 PubMedCrossRefGoogle Scholar
  30. Löytynoja A, Goldman N (2008) Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science (New York, NY) 320(5883):1632–1635. doi: 10.1126/science.1158395 CrossRefGoogle Scholar
  31. Lynch JA, Özüak O, Khila A, Abouheif E, Desplan C, Roth S (2011) The phylogenetic origin of oskar coincided with the origin of maternally provisioned germ plasm and pole cells at the base of the holometabola. PLoS Genet 7(4):e1002029. doi: 10.1371/journal.pgen.1002029 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Mahowald AP (1962) Fine structure of pole cells and polar granules in Drosophila melanogaster. J Exp Zool 151:201–215CrossRefGoogle Scholar
  33. Mahowald AP (1968) Polar granules of Drosophila. II. Ultrastructural changes during early embryogenesis. J Exp Zool 167(2):237–261. doi: 10.1002/jez.1401670211 PubMedCrossRefGoogle Scholar
  34. Markova-Raina P, Petrov D (2011) High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res 21(6):863–874. doi: 10.1101/gr.115949.110 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Markussen FH, Michon AM, Breitwieser W, Ephrussi A (1995) Translational control of oskar generates short OSK, the isoform that induces pole plasm assembly. Development 121(11):3723–3732PubMedGoogle Scholar
  36. Michod RE (2005) On the transfer of fitness from the cell to the multicellular organism. Biol Philos 20(5):967–987CrossRefGoogle Scholar
  37. Obbard DJ, Maclennan J, Kim KW, Rambaut A, O’Grady PM, Jiggins FM (2012) Estimating divergence dates and substitution rates in the Drosophila phylogeny. Mol Biol Evol 29(11):3459–3473. doi: 10.1093/molbev/mss150 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Oliveira DCSG, Almeida FC, O’Grady PM, Armella MA, DeSalle R, Etges WJ (2012) Monophyly, divergence times, and evolution of host plant use inferred from a revised phylogeny of the Drosophila repleta species group. Mol Phylogenet Evol 64(3):533–544. doi: 10.1016/j.ympev.2012.05.012 PubMedCrossRefGoogle Scholar
  39. Privman E, Penn O, Pupko T (2012) Improving the performance of positive selection inference by filtering unreliable alignment regions. Mol Biol Evol 29(1):1–5. doi: 10.1093/molbev/msr177 PubMedCrossRefGoogle Scholar
  40. Remsen J, O’Grady P (2002) Phylogeny of Drosophilinae (Diptera: Drosophilidae), with comments on combined analysis and character support. Mol Phylogenet Evol 24(2):249–264PubMedCrossRefGoogle Scholar
  41. Robe LJ, Valente VLS, Budnik M, Loreto ELS (2005) Molecular phylogeny of the subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on Neotropical species and groups: a nuclear versus mitochondrial gene approach. Mol Phylogenet Evol 36(3):623–640. doi: 10.1016/j.ympev.2005.05.005 PubMedCrossRefGoogle Scholar
  42. Rongo C, Gavis ER, Lehmann R (1995) Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development 121(9):2737–2746PubMedGoogle Scholar
  43. Sayle RA, Milner-White EJ (1995) RASMOL: biomolecular graphics for all. Trends Biochem Sci 20(9):374PubMedCrossRefGoogle Scholar
  44. Studer RA, Penel S, Duret L, Robinson-Rechavi M (2008) Pervasive positive selection on duplicated and nonduplicated vertebrate protein coding genes. Genome Res 18(9):1393–1402. doi: 10.1101/gr.076992.108 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Suyama R, Jenny A, Curado S, Pellis-van Berkel W, Ephrussi A (2009) The actin-binding protein Lasp promotes Oskar accumulation at the posterior pole of the Drosophila embryo. Development 136(1):95–105. doi: 10.1242/dev.027698 PubMedCrossRefGoogle Scholar
  46. Tamura K, Subramanian S, Kumar S (2004) Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. Mol Biol Evol 21(1):36–44. doi: 10.1093/molbev/msg236 PubMedCrossRefGoogle Scholar
  47. van der Linde K, Houle D, Spicer GS, Steppan SJ (2010) A supermatrix-based molecular phylogeny of the family Drosophilidae. Genet Res 92(1):25–38CrossRefGoogle Scholar
  48. Vanzo NF, Ephrussi A (2002) Oskar anchoring restricts pole plasm formation to the posterior of the Drosophila oocyte. Development 129(15):3705–3714PubMedGoogle Scholar
  49. Vanzo N, Oprins A, Xanthakis D, Ephrussi A, Rabouille C (2007) Stimulation of endocytosis and actin dynamics by Oskar polarizes the Drosophila oocyte. Dev Cell 12(4):543–555PubMedCrossRefGoogle Scholar
  50. Webster PJ, Suen J, Macdonald PM (1994) Drosophila virilis oskar transgenes direct body patterning but not pole cell formation or maintenance of mRNA localization in D. melanogaster. Development 120(7):2027–2037PubMedGoogle Scholar
  51. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. doi: 10.1093/molbev/msm088 PubMedCrossRefGoogle Scholar
  52. Yang Z, Swanson WJ (2002) Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol Biol Evol 19(1):49–57PubMedCrossRefGoogle Scholar
  53. Yang Z, Nielsen R, Goldman N, Pedersen AM (2000a) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449PubMedCentralPubMedGoogle Scholar
  54. Yang Z, Swanson WJ, Vacquier VD (2000b) Maximum-likelihood analysis of molecular adaptation in abalone sperm lysin reveals variable selective pressures among lineages and sites. Mol Biol Evol 17(10):1446–1455PubMedCrossRefGoogle Scholar
  55. Yang Z, Wong WS, Nielsen R (2005) Bayes empirical Bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118. doi: 10.1093/molbev/msi097 PubMedCrossRefGoogle Scholar
  56. Yang Y, Hou Z-C, Y-h Q, Kang H, Zeng Q-t (2012) Increasing the data size to accurately reconstruct the phylogenetic relationships between nine subgroups of the Drosophila melanogaster species group (Drosophilidae, Diptera). Mol Phylogenet Evol 62(1):214–223. doi: 10.1016/j.ympev.2011.09.018 PubMedCrossRefGoogle Scholar
  57. Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479. doi: 10.1093/molbev/msi237 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  2. 2.Curriculum Fellows Program, Department of Cell BiologyHarvard Medical SchoolBostonUSA

Personalised recommendations