Development Genes and Evolution

, Volume 223, Issue 5, pp 319–328 | Cite as

Identification and characterization of a twist ortholog in the polychaete annelid Platynereis dumerilii reveals mesodermal expression of Pdu-twist

  • Kathrin Pfeifer
  • Christoph Schaub
  • Georg Wolfstetter
  • Adriaan DorresteijnEmail author
Original Article


The basic helix-loop-helix transcription factor twist plays a key role during mesoderm development in Bilateria. In this study, we identified a twist ortholog in the polychaete annelid Platynereis dumerilii and analyze its expression during larval development, postlarval growth up to the adult stage, and caudal regeneration after amputation of posterior segments. At late larval stages, Pdu-twist is expressed in the mesodermal anlagen and in developing muscles. During adulthood and caudal regeneration, Pdu-twist is expressed in the posterior growth zone, in mesodermal cells within the newly forming segments and budding parapodia. Our results indicate that Pdu-twist is involved in mesoderm formation during larval development, posterior growth, and caudal regeneration.


Regeneration Muscle Transcription factor Posterior growth Segmentation 



The authors would like to thank Brigitte Fronk, Renate Plaß, and Susanne Vasoldt-Kröckel for maintenance of the Platynereis dumerilii culture.


  1. Anant S, Roy S, VijayRaghavan K (1998) Twist and Notch negatively regulate adult muscle differentiation in Drosophila. Development 125:1361–1369PubMedGoogle Scholar
  2. Bate M, Rushton E, Currie DA (1991) Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila. Development 113:79–89PubMedGoogle Scholar
  3. Baylies MK, Bate M (1996) twist: a myogenic switch in Drosophila. Science 272:1481–1484PubMedCrossRefGoogle Scholar
  4. Castanon I, Baylies MK (2002) A Twist in fate: evolutionary comparison of Twist structure and function. Gene 287:11–22PubMedCrossRefGoogle Scholar
  5. Cripps RM, Olson EN (1998) Twist is required for muscle template splitting during adult Drosophila myogenesis. Dev Biol 203:106–115PubMedCrossRefGoogle Scholar
  6. Currie DA, Bate M (1991) The development of adult abdominal muscles in Drosophila: myoblasts express twist and are associated with nerves. Development 113:91–102PubMedGoogle Scholar
  7. de Rosa R, Prud'homme B, Balavoine G (2005) Caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol Dev 7:574–587PubMedCrossRefGoogle Scholar
  8. Dill KK, Thamm K, Seaver EC (2007) Characterization of twist and snail gene expression during mesoderm and nervous system development in the polychaete annelid Capitella sp. I. Dev Genes Evol 217:435–447PubMedCrossRefGoogle Scholar
  9. Dorresteijn AWC (1990) Quantitative analysis of cellular differentiation during early embryogenesis of Platynereis dumerilii. Roux's Arch Dev Biol 199:14–30CrossRefGoogle Scholar
  10. Fernandes J, Bate M, Vijayraghavan K (1991) Development of the indirect flight muscles of Drosophila. Development 113(1):67–77PubMedGoogle Scholar
  11. Fischer A, Dorresteijn A (2004) The polychaete Platynereis dumerilii (Annelida): a laboratory animal with spiralian cleavage, lifelong segment proliferation and a mixed benthic/pelagic life cycle. Bioessays 26:314–325PubMedCrossRefGoogle Scholar
  12. Fischer AH, Henrich T, Arendt D (2010) The normal development of Platynereis dumerilii (Nereididae, Annelida). Front Zool 7:31PubMedCrossRefGoogle Scholar
  13. Germanguz I, Lev D, Waisman T, Kim CH, Gitelman I (2007) Four twist genes in zebrafish, four expression patterns. Dev Dyn 236:2615–2626PubMedCrossRefGoogle Scholar
  14. Handel K, Basal A, Fan X, Roth S (2005) Tribolium castaneum twist: gastrulation and mesoderm formation in a short-germ beetle. Dev Genes Evol 215:13–31PubMedCrossRefGoogle Scholar
  15. Harfe BD, Vaz Gomes A, Kenyon C, Liu J, Krause M, Fire A (1998) Analysis of a Caenorhabditis elegans Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes Dev 12:2623–2635PubMedCrossRefGoogle Scholar
  16. Hasse C, Rebscher N, Reiher W, Sobjinski K, Moerschel E, Beck L, Tessmar-Raible K, Arendt D, Hassel M (2010) Three consecutive generations of nephridia occur during development of Platynereis dumerilii (Annelida, Polychaeta). Dev Dyn 239:1967–1976PubMedCrossRefGoogle Scholar
  17. Hauenschild C, Fischer A (1969) Platynereis dumerilii. Grosses Zoologisches Praktikum 10 bGoogle Scholar
  18. Hebrok M, Wertz K, Fuchtbauer EM (1994) M-twist is an inhibitor of muscle differentiation. Dev Biol 165:537–544PubMedCrossRefGoogle Scholar
  19. Leptin M (1991) twist and snail as positive and negative regulators during Drosophila mesoderm development. Genes Dev 5:1568–1576PubMedCrossRefGoogle Scholar
  20. Leptin M, Casal J, Grunewald B, Reuter R (1992) Mechanisms of early Drosophila mesoderm formation. Dev Suppl:23–31Google Scholar
  21. Martín-Durán JM, Amaya E, Romero R (2010) Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 340:145–158PubMedCrossRefGoogle Scholar
  22. Michelson AM (1996) A new turn (or two) for twist. Science 272:1449–1450PubMedCrossRefGoogle Scholar
  23. Nederbragt AJ, Lespinet O, van Wageningen S, van Loon AE, Adoutte A, Dictus WJ (2002) A lophotrochozoan twist gene is expressed in the ectomesoderm of the gastropod mollusk Patella vulgata. Evol Dev 4:334–343PubMedCrossRefGoogle Scholar
  24. Niwa N, Akimoto-Kato A, Sakuma M, Kuraku S, Hayashi S (2013) Homeogenetic inductive mechanism of segmentation in polychaete tail regeneration. Dev Biol. doi: 10.1016/j.ydbio.2013.04.010
  25. Perez-Pomares JM, Munoz-Chapuli R (2002) Epithelial-mesenchymal transitions: a mesodermal cell strategy for evolutive innovation in Metazoans. Anat Rec 268:343–351PubMedCrossRefGoogle Scholar
  26. Pfeifer K, Dorresteijn AW, Frobius AC (2012) Activation of Hox genes during caudal regeneration of the polychaete annelid Platynereis dumerilii. Dev Genes Evol 222:165–179PubMedCrossRefGoogle Scholar
  27. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  28. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504PubMedCrossRefGoogle Scholar
  29. Simpson P (1983) Maternal-zygotic gene interactions during formation of the dorso-ventral pattern in Drosophila embryos. Genetics 105:615–632PubMedGoogle Scholar
  30. Sommer RJ, Tautz D (1994) Expression patterns of twist and snail in Tribolium (Coleoptera) suggest a homologous formation of mesoderm in long and short germ band insects. Dev Genet 15:32–37PubMedCrossRefGoogle Scholar
  31. Soto JG, Nelson BH, Weisblat DA (1997) A leech homolog of twist: evidence for its inheritance as a maternal mRNA. Gene 199:31–37PubMedCrossRefGoogle Scholar
  32. Spicer DB, Rhee J, Cheung WL, Lassar AB (1996) Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. Science 272:1476–1480PubMedCrossRefGoogle Scholar
  33. Spring J, Yanze N, Middel AM, Stierwald M, Groger H, Schmid V (2000) The mesoderm specification factor twist in the life cycle of jellyfish. Dev Biol 228:363–375PubMedCrossRefGoogle Scholar
  34. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21:172–185PubMedCrossRefGoogle Scholar
  35. Tavares AT, Izpisuja-Belmonte JC, Rodriguez-Leon J (2001) Developmental expression of chick twist and its regulation during limb patterning. Int J Dev Biol 45:707–713PubMedGoogle Scholar
  36. Technau U, Scholz CB (2003) Origin and evolution of endoderm and mesoderm. Int J Dev Biol 47:531–539PubMedGoogle Scholar
  37. Thisse B, Stoetzel C, Gorostiza-Thisse C, Perrin-Schmitt F (1988) Sequence of the twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J 7:2175–2183PubMedGoogle Scholar
  38. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  39. Wolf C, Thisse C, Stoetzel C, Thisse B, Gerlinger P, Perrin-Schmitt F (1991) The M-twist gene of Mus is expressed in subsets of mesodermal cells and is closely related to the Xenopus X-twi and the Drosophila twist genes. Dev Biol 143:363–373PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kathrin Pfeifer
    • 1
  • Christoph Schaub
    • 2
  • Georg Wolfstetter
    • 3
  • Adriaan Dorresteijn
    • 1
    Email author
  1. 1.Institut für Allgemeine und Spezielle Zoologie, Allgemeine Zoologie und EntwicklungsbiologieJustus-Liebig-Universität GießenGiessenGermany
  2. 2.Institut für Biologie, Abteilung EntwicklungsbiologieFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Department of Molecular BiologyUmea University (Sweden)UmeaSweden

Personalised recommendations