Development Genes and Evolution

, Volume 223, Issue 4, pp 237–246 | Cite as

The expression pattern of the genes engrailed, pax6, otd and six3 with special respect to head and eye development in Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae)

Original Article

Abstract

The genes otd/otx, six3, pax6 and engrailed are involved in eye patterning in many animals. Here, we describe the expression pattern of the homologs to otd/otx, six3, pax6 and engrailed in the developing Euperipatoides kanangrensis embryos. Special reference is given to the expression in the protocerebral/ocular region. E. kanangrensis otd is expressed in the posterior part of the protocerebral/ocular segment before, during and after eye invagination. E. kanangrensis otd is also expressed segmentally in the developing ventral nerve cord. The E. kanangrensis six3 is located at the extreme anterior part of the protocerebral/ocular segment and not at the location of the developing eyes. Pax6 is expressed in a broad zone at the posterior part of the protocerebral/ocular segment but only weak expression can be seen at the early onset of eye invagination. In late stages of development, the expression in the eye is upregulated. Pax6 is also expressed in the invaginating hypocerebral organs, thus supporting earlier suggestions that the hypocerebral organs in onychophorans are glands. Pax6 transcripts are also present in the developing ventral nerve cord. The segment polarity gene engrailed is expressed at the dorsal side of the developing eye including only a subset of the cells of the invaginating eye vesicle. We show that engrailed is not expressed in the neuroectoderm of the protocerebral/ocular segment as in the other segments. In addition, we discuss other aspect of otd, six3 and pax6 expression that are relevant to our understanding of evolutionary changes in morphology and function in arthropods.

Keywords

Onychophora Eye CNS Development Pax6 Otd Six3 Engrailed expression 

Supplementary material

427_2013_442_Fig8_ESM.jpg (842 kb)
Supplementary Fig. 8

(JPG 841 kb)

427_2013_442_Fig10_ESM.tif (11.7 mb)
High resolution image file (TIF 11.7 mb)
427_2013_442_Fig9_ESM.jpg (322 kb)
Supplementary Fig. 9

(JPG 321 kb)

427_2013_442_Fig11_ESM.tif (2.2 mb)
High resolution image file (TIF 2.17 mb)
427_2013_442_MOESM1_ESM.docx (30 kb)
ESM 1(DOCX 29 kb)
427_2013_442_MOESM2_ESM.docx (15 kb)
ESM 2(DOCX 15 kb)

References

  1. Anderson DT (1966) The comparative early embryology of the Oligochaeta, Hirudinae and Onychophora. Proc Linn Soc NSW 91(1):10–43Google Scholar
  2. Arendt D, Tessmar K, de Campos-Baptista M, Dorresteijn A, Wittbrodt J (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129:1143–1154PubMedGoogle Scholar
  3. Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle B-A, Brown NL (2008) Isolation and expression of pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 237(8):2209–2219. doi:10.1002/dvdy.21634 PubMedCrossRefGoogle Scholar
  4. Browne W, Schmid B, Wimmer E, Martindale M (2006) Expression of otd orthologs in the amphipod crustacean, Parhyale hawaiensis. Dev Genes Evol 216:581–595PubMedCrossRefGoogle Scholar
  5. Callaerts P, Halder G, Gehring WJ (1997) Pax6 in development and evolution. Annu Rev Neurosci 20(1):483–532. doi:10.1146/annurev.neuro.20.1.483 PubMedCrossRefGoogle Scholar
  6. Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioro T, Longhorn SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci 108(38):15920–15924. doi:10.1073/pnas.1105499108 PubMedCrossRefGoogle Scholar
  7. Campos-Ortega JA, Hartenstein V (1985) The embryonic development of Drosophila melanogaster. Springer-Verlag, BerlinCrossRefGoogle Scholar
  8. Clements J, Hens K, Francis C, Schellens A, Callaerts P (2008) Conserved role for the Drosophila pax6 homolog eyeless in differentiation and function of insulin-producing neurons. Proc Natl Acad Sci 105(42):16183–16188. doi:10.1073/pnas.0708330105 PubMedCrossRefGoogle Scholar
  9. Dakin WJ (1921) The eye of peripatus. Q J Microsc Sci 65:163–172Google Scholar
  10. Del Bene F, Tessmar-Raible K, Wittbrodt J (2004) Direct interaction of geminin and six3 in eye development. Nature 427(6976):745–749PubMedCrossRefGoogle Scholar
  11. Doeffinger C, Hartenstein V, Stollewerk A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, optic ganglia and mushroom body. J Comp Neurol 518(13):2612–2632. doi:10.1002/cne.22355 PubMedGoogle Scholar
  12. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne WE, Smith SA, Seaver E, Rouse GW, Obst M, Edgecombe GD, Sorensen MV, Haddock SHD, Schmidt-Rhaesa A, Okusu A, Kristensen RM, Wheeler WC, Martindale MQ, Giribet G (2008) Broad phylogenomic sampling improves resolution of the animal tree of life. Nature 452(7188):745–749PubMedCrossRefGoogle Scholar
  13. Eakin RM, Westfall JA (1965) Fine structure of the eye of peripatus (Onychophora). Cell Tissue Res 68:278–300Google Scholar
  14. Eriksson BJ, Tait NN (2012) Early development in the velvet worm Euperipatoides kanangrensis Reid 1996 (Onychophora: Peripatopsidae). Arthropod Structure & Development 41(5):483–493. doi:10.1016/j.asd.2012.02.009 CrossRefGoogle Scholar
  15. Eriksson BJ, Tait NN, Norman JM, Budd GE (2005) An ultrastructural investigation of the hypocerebral organ of the adult Euperipatoides kanangrensis (Onychophora, Peripatopsidae). Arthropod Struct Dev 34(4):407–418. doi:10.1016/j.asd.2005.03.002 CrossRefGoogle Scholar
  16. Eriksson BJ, Tait NN, Budd GE, Akam M (2009) The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol 219:249–264PubMedCrossRefGoogle Scholar
  17. Finkelstein R, Smouse D, Capaci TM, Spradling AC, Perrimon N (1990) The orthodenticle gene encodes a novel homeo domain protein involved in the development of the Drosophila nervous system and ocellar visual structures. Genes Dev 4(9):1516–1527. doi:10.1101/gad.4.9.1516 PubMedCrossRefGoogle Scholar
  18. Friedrich M (2006) Ancient mechanisms of visual sense organ development based on comparison of the gene networks controlling larval eye, ocellus and compound eye specification in Drosophila. Arthropod Struct Dev 35:357–378PubMedCrossRefGoogle Scholar
  19. Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48:707–717PubMedCrossRefGoogle Scholar
  20. Griffin C, Kleinjan DA, Doe B, van Heyningen V (2002) New 3′ elements control pax6 expression in the developing pretectum, neural retina and olfactory region. Mech Dev 112(1–2):89–100. doi:10.1016/S0925-4773(01)00646-3 PubMedCrossRefGoogle Scholar
  21. Hanson I, Van Heyningen V (1995) Pax6: more than meets the eye. Trends Genet 11(7):268–272. doi:10.1016/S0168-9525(00)89073-3 PubMedCrossRefGoogle Scholar
  22. Hirth F, Kammermeier L, Frei E, Walldorf U, Noll M, Reichert H (2003) An urbilaterian origin of the tripartite brain: developmental genetic insights from Drosophila. Development 130:2365–2373PubMedCrossRefGoogle Scholar
  23. Huelsenbeck JP, Ronquist F (2001) MrBayes: bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  24. Kioussi C, O’Connell S, St-Onge L, Treier M, Gleiberman AS, Gruss P, Rosenfeld MG (1999) Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc Natl Acad Sci 96(25):14378–14382. doi:10.1073/pnas.96.25.14378 PubMedCrossRefGoogle Scholar
  25. Kumar JP (2009) The molecular circuitry governing retinal determination. Biochimica et Biophysica Acta (BBA) Gene Regul Mech 1789(4):306–314. doi:10.1016/j.bbagrm.2008.10.001 CrossRefGoogle Scholar
  26. Li Y, Brown S, Hausdorf B, Tautz D, Denell R, Finkelstein R (1996) Two orthodenticle-related genes in the short-germ beetle Tribolium castaneum. Dev Genes Evol 206:35–45CrossRefGoogle Scholar
  27. Liu W, Lagutin O, Swindell E, Jamrich M, Oliver G (2010) Neuroretina specification in mouse embryos requires six3-mediated suppression of wnt8b in the anterior neural plate. J Clin Invest 120(10):3568–3577. doi:10.1172/jci43219 PubMedCrossRefGoogle Scholar
  28. Loosli F, Koster RW, Carl M, Krone A, Wittbrodt J (1998) Six3, a medaka homologue of the Drosophila homeobox gene sine oculis is expressed in the anterior embryonic shield and the developing eye. Mech Dev 74(1–2):159–164. doi:10.1016/s0925-4773(98)00055-0 PubMedCrossRefGoogle Scholar
  29. Manton SM (1949) Studies on the Onychophora VII. The early embryonic stages of Peripatopsis and some general considerations concerning the morphology and phylogeny of the Arthropoda. Philos Trans R Soc Lond 233(606):483–580CrossRefGoogle Scholar
  30. Martinez-Morales JR, Signore M, Acampora D, Simeone A, Bovolenta P (2001) Otx genes are required for tissue specification in the developing eye. Development 128(11):2019–2030PubMedGoogle Scholar
  31. Mayer G (2006) Structure and development of onychophoran eyes: what is the ancestral visual organ in arthropods? Arthropod Struct Dev 35(4):231–245. doi:10.1016/j.asd.2006.06.003 PubMedCrossRefGoogle Scholar
  32. Nielsen C (2001) Animal evolution, interrelationships of the living phyla, 2nd edn. Oxford University, OxfordGoogle Scholar
  33. Ostrin EJ, Li Y, Hoffman K, Liu J, Wang K, Zhang L, Mardon G, Chen R (2006) Genome-wide identification of direct targets of the Drosophila retinal determination protein eyeless. Genome Res 16(4):466–476. doi:10.1101/gr.4673006 PubMedCrossRefGoogle Scholar
  34. Paulus HF (1979) Eye structure and the monophyly of the Arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp 299–383Google Scholar
  35. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  36. Royet J, Finkelstein R (1995) Pattern formation in Drosophila head development: the role of the orthodenticle homeobox gene. Development 121(11):3561–3572PubMedGoogle Scholar
  37. Sedgwick A (1887) The development of the Cape species of Peripatus. Part III. On the changes from stage A to stage F. Q J Micr Sci 27:467–550Google Scholar
  38. Seimiya M, Gehring WJ (2000) The Drosophila homeobox gene optix is capable of inducing ectopic eyes by an eyeless-independent mechanism. Development 127(9):1879–1886PubMedGoogle Scholar
  39. Seo H-C, Curtiss J, Mlodzik M, Fjose A (1999) Six class homeobox genes in Drosophila belong to three distinct families and are involved in head development. Mech Dev 83(1–2):127–139. doi:10.1016/S0925-4773(99)00045-3 PubMedCrossRefGoogle Scholar
  40. Steinmetz P, Urbach R, Posnien N, Eriksson J, Kostyuchenko R, Brena C, Guy K, Akam M, Bucher G, Arendt D (2010) Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo 1(1):14PubMedCrossRefGoogle Scholar
  41. Steinmetz PRH, Kostyuchenko RP, Fischer A, Arendt D (2011) The segmental pattern of otx, gbx and hox genes in the annelid Platynereis dumerilii. Evol Dev 13(1):72–79. doi:10.1111/j.1525-142X.2010.00457.x PubMedCrossRefGoogle Scholar
  42. Storch V, Ruhberg H (1993) Onychophora. Microscopic Anatomy of Invertebrates, Onychophora, Chilopoda and lesser Protostomata. Wiley-Liss, New YorkGoogle Scholar
  43. Telford M, Thomas R (1998) Expression of homeobox genes shows chelicerate arthropods retain their deutocerebral segment. Proc Natl Acad Sci USA 95:10671–10675PubMedCrossRefGoogle Scholar
  44. Walker M, Tait N (2004) Studies of embryonic development and the reproductive cycle in ovoviviparous Australian Onychophora (Peripatopsidae). J Zool 264:333–354CrossRefGoogle Scholar
  45. Wurst W, Auerbach AB, Joyner AL (1994) Multiple developmental defects in engrailed-1 mutant mice: an early mid-hindbrain deletion and patterning defects in forelimbs and sternum. Development 120(7):2065–2075PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bo Joakim Eriksson
    • 1
  • Leyli Samadi
    • 1
  • Axel Schmid
    • 1
  1. 1.Department of NeurobiologyUniversity of ViennaWienAustria

Personalised recommendations