Development Genes and Evolution

, Volume 222, Issue 6, pp 313–323 | Cite as

Early development of coelomic structures in an echinoderm larva and a similarity with coelomic structures in a chordate embryo

Original Article


Early coelomic development in the abbreviated development of the sea urchin Holopneustes purpurescens is described and then used in a comparison with coelomic development in chordate embryos to support homology between a single arm of the five-armed radial body plan of an echinoderm and the single bilateral axis of a chordate. The homology depends on a positional similarity between the origin of the hydrocoele in echinoderm development and the origin of the notochord in chordate development, and a positional similarity between the respective origins of the coelomic mesoderm and chordate mesoderm in echinoderm and chordate development. The hydrocoele is homologous with the notochord and the secondary podia are homologous with the somites. The homology between a single echinoderm arm and the chordate axis becomes clear when the aboral to oral growth from the archenteron in the echinoderm larva is turned anteriorly, more in line with the anterior–posterior axis of the early zygote. A dorsoventral axis inversion in chordates is not required in the proposed homology.


Deuterostome Evolution Mesoderm Morphogenesis Metamerism 


  1. Arenas-Mena C, Martinez P, Cameron RA, Davidson EH (1998) Expression of the Hox gene complex in the indirect development of a sea urchin. Proc Natl Acad Sci USA 95:13062–13067PubMedCrossRefGoogle Scholar
  2. Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643PubMedGoogle Scholar
  3. Aulehla A, Pourquié O (2010) Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol 2:a000869PubMedCrossRefGoogle Scholar
  4. Bellairs R, Osmond M (2005) The atlas of chick development, 2nd edn. Elsevier, AmsterdamGoogle Scholar
  5. Cameron CB, Garey JR, Swalla BJ (2000) Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. Proc Natl Acad Sci USA 97:4469–4474PubMedCrossRefGoogle Scholar
  6. Cisternas P, Byrne M (2009) Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev Genes Evol 219:613–618PubMedCrossRefGoogle Scholar
  7. Cox G (2007) Optical imaging techniques in cell biology. CRC, Boca RatonGoogle Scholar
  8. David B, Mooi R (1996) Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. C R Acad Sci Paris 319:577–584Google Scholar
  9. De Robertis EM, Sasai Y (1996) A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40PubMedCrossRefGoogle Scholar
  10. Ferkowicz MJ, Raff RA (2001) Wnt gene expression in sea urchin development: heterochronies associated with the evolution of developmental mode. Evol Dev 3:24–33PubMedCrossRefGoogle Scholar
  11. Gilbert SF (2010) Developmental biology, 9th edn. Sinauer Associates, SunderlandGoogle Scholar
  12. Hara Y, Yamaguchi M, Akasaka K, Nakano H, Nonaka M, Amemiya S (2006) Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol 216:797–809PubMedCrossRefGoogle Scholar
  13. Heinzeller Th, Welsch U (1999) The complex of notochord/neural plate in chordates and the complex of hydrocoel/ectoneural cord in echinoderms—analogous or homologous? In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research 1998. Balkema, Rotterdam, pp 285–290Google Scholar
  14. Hibino T, Harada Y, Minokawa T, Nonaka M, Amemiya S (2004) Molecular heterotopy in the expression of Brachyury orthologs in order Clypeasteroida (irregular sea urchins) and order Echinoida (regular sea urchins). Dev Genes Evol 214:546–558PubMedCrossRefGoogle Scholar
  15. Holland LZ, Kene M, Williams NA, Holland ND (1997) Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. Development 124:1723–1732PubMedGoogle Scholar
  16. Hotchkiss FHC (1998) A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24:200–214Google Scholar
  17. Hyman LH (1955) The invertebrates: Echinodermata IV. McGraw-Hill, New YorkGoogle Scholar
  18. Jefferies RPS (1990) The solute Dendrocystoides scoticus from the Upper Ordovician of Scotland and the ancestry of chordates and echinoderms. Palaeontology 33:631–679Google Scholar
  19. Lacalli TC (2005) Protochordate body plan and the evolutionary role of larvae: old controversies resolved? Can J. Zool 83:216–224Google Scholar
  20. Lawson KA, Meneses JJ, Pedersen RA (1991) Clonal analysis of epiblast fate during germ layer formation in the mouse embryo. Development 113:891–911PubMedGoogle Scholar
  21. Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721PubMedCrossRefGoogle Scholar
  22. Mooi R, David B, Marchand D (1994) Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In: David B, Guille A, Féral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 87–95Google Scholar
  23. Mooi R, David B, Wray GA (2005) Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evol Dev 7:542–555PubMedCrossRefGoogle Scholar
  24. Morris VB (1995) Apluteal development of the sea urchin Holopneustes purpurescens Agassiz (Echinodermata: Echinoidea: Euechinoidea). Zool J Linnean Soc Lond 114:349–364CrossRefGoogle Scholar
  25. Morris VB (2007) Origins of radial symmetry identified in an echinoderm during adult development and the inferred axes of ancestral bilateral symmetry. Proc R Soc B 274:1511–1516PubMedCrossRefGoogle Scholar
  26. Morris VB (2009) On the sites of secondary podia formation in a juvenile echinoid: growth of the body types in echinoderms. Dev Genes Evol 219:597–608PubMedCrossRefGoogle Scholar
  27. Morris VB (2011) Coelomogenesis during the abbreviated development of the echinoid Heliocidaris erythrogramma and the developmental origin of the echinoderm pentameral body plan. Evol Dev 13:370–381PubMedCrossRefGoogle Scholar
  28. Morris VB, Byrne M (2005) Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. J Exp Zool (Mol Dev Evol) 304B:456–467CrossRefGoogle Scholar
  29. Nishida H (1987) Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. III. Up to the tissue restricted stage. Dev Biol 121:526–541PubMedCrossRefGoogle Scholar
  30. Peterson KJ, Harada Y, Cameron RA, Davidson EH (1999a) Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes. Dev Biol 207:419–431PubMedCrossRefGoogle Scholar
  31. Peterson KJ, Cameron RA, Tagawa K, Satoh N, Davidson EH (1999b) A comparative molecular approach to mesodermal patterning in basal deuterostomes: the expression pattern of Brachyury in the enteropneust hemichordate Ptychodera flava. Development 126:85–95PubMedGoogle Scholar
  32. Poustka AJ, Kühn A, Groth D, Weise V, Yaguchi S, Burke RD, Herwig R, Lehrach H, Panopoulou G (2007) A global view of gene expression in lithium and zinc treated sea urchin embryos: new components of gene regulatory networks. Genome Biol 8:R85PubMedCrossRefGoogle Scholar
  33. Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U et al (2008) The amphioxus genome and the evolution of the chordate karyotype. Nature 453:1064–1071PubMedCrossRefGoogle Scholar
  34. Raff RA, Popodi EM (1996) Evolutionary approaches to analyzing development. In: Ferraris JD, Palumbi SR (eds) Molecular zoology: advances, strategies, and protocols. Wiley, New York, pp 245–265Google Scholar
  35. Ruppert EE (2005) Key characters uniting hemichordates and chordates: homologies or homoplasies? Can J Zool 83:8–23CrossRefGoogle Scholar
  36. Selleck MAJ, Stern CD (1991) Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. Development 112:615–626PubMedGoogle Scholar
  37. Smith AB (2005) The pre-radial history of echinoderms. Geol J 40:255–280CrossRefGoogle Scholar
  38. Swalla BJ, Smith AB (2008) Deciphering deuterostome phylogeny: molecular, morphological and palaeontological perspectives. Phil Trans R Soc B 363:1557–1568PubMedCrossRefGoogle Scholar
  39. Turner RL (1998) The metameric echinoderm. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Balkema, Rotterdam, p 89Google Scholar
  40. Ubaghs G (1967) General characters of Echinodermata. In: Moore RC (ed) Treatise on invertebrate paleontology, part S, Echinodermata 1. The University of Kansas and the Geological Society of America, Inc, Lawrence, pp S3–S60Google Scholar
  41. von Ubisch L (1913) Die Entwicklung von Strongylocentrotus lividus. (Echinus microtuberculatus, Arbacia pustulosa.). Zeit f wiss Zool 106:409–448Google Scholar
  42. Zamora S, Rahman IA, Smith AB (2012) Plated Cambrian bilaterians reveal the earliest stages of echinoderm evolution. PLoS ONE 7(6):e38296PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Biological Sciences A12University of SydneyNSWAustralia

Personalised recommendations