Development Genes and Evolution

, Volume 222, Issue 5, pp 287–298 | Cite as

Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum

  • Johannes Benno Schinko
  • Kathrin Hillebrand
  • Gregor Bucher
Original Article


Insect gene function has mainly been studied in the fruit fly Drosophila melanogaster because in this species many techniques and resources are available for gene knock down and the ectopic activation of gene function. However, in order to study biological aspects that are not represented by the Drosophila model, and in order to test to what degree gene functions are conserved within insects and what changes in gene function accompanied the evolution of novel traits, the establishment of respective tools in other insect species is required. While gene knock down can be induced by RNA interference in many insects, methods to misexpress genes are much less developed. In order to allow misexpression of genes in a timely controlled manner in the red flour beetle Tribolium castaneum, we have established a heat shock-mediated misexpression system. We show that endogenous heat shock elements perform better than artificial heat shock elements derived from vertebrates. We carefully determine the optimal conditions for heat shock and define a core promoter for use in future constructs. Finally, using this system, we study the effects of misexpressing the head patterning gene Tc-orthodenticle1 (Tc-otd1), We show that Tc-otd1 suppresses Tc-wingless (Tc-wg) in the trunk and to some degree in the head.


Heat shock hsp68 hsp70 Misexpression Orthodenticle 



We thank Dr. Thomas Czerny for the artificial heat shock elements, Dr. Fakrudin Bashasab for identifying the hsp68 promoter. Dr. Michael Schoppmeier and Dr. Jochen Trauner for help with the interpretation of the signal in the ovaries. We also thank Anna Gilles for help with in situ hybridizations and helpful discussions and Dr. Andrew D. Peel for language corrections.

Supplementary material

427_2012_412_MOESM1_ESM.pdf (84 kb)
ESM 1 Sequences of the constructs shown in Fig. 1 are provided in gb format in this file. (PDF 84 kb)
427_2012_412_MOESM2_ESM.pdf (80 kb)
ESM 2 Heat shock-mediated lethality of pupae (a) and embryos (b). Pupae and embryos were heat shocked at 46°C/115°F and 48°C/118°F for 5, 10, 15, 20, 30, and 60 min. Pupal survival was scored by development into viable adult beetles whereas embryonic development was scored by development of a wildtype larva cuticle. At both developmental stages lethality was increased at the higher temperature. Whereas pupae tolerated a 60-min heat shock at 46°C/115°F with only slight decrease in viability (73% compared to 80% of unshocked), embryos were more sensitive (37% compared to 90% of unshocked). At 48°C/118°F pupal survival was strongly reduced if heat shocks were given for 20 min (53% survival). A heat shock for 60 min at this temperature caused death of all shocked pupae. At the embryonic stage a heat shock of 5 min at 48°C/118°F already decreased the survival by 20%. A 10-min heat shock reduced viability to 65% and longer heat shocks led to death of more than 50% of the embryos. (PDF 80 kb)
427_2012_412_MOESM3_ESM.pdf (171 kb)
ESM 3 Heat shock induced misexpression of Tc-otd1. Heat shocked v w wildtype embryos, as well as heat shocked embryos of the transgenic line M3 (endoHSE::Tc-otd1) were fixed two hours after heat shock. As a control, non-heat shocked transgenic embryos of the same line and same stage were also fixed. Double whole mount in situ hybridization was performed with Tc-wg (blue) and Tc-otd1 (orange) antisense RNA probes. The v w embryos exhibited normal Tc-wg and Tc-otd1 expression (a–b′), as did the non-heat shocked transgenic embryos (c–d′). Two hours after heat shock Tc-otd1 was strongly expressed ubiquitously in transgenic embryos at a level similar to the endogenous expression (e–f). Expression of Tc-wg was still present in the trunk (e,f) 2 h after onset of misexpression of Tc-otd1. (PDF 170 kb)


  1. Adám A, Bártfai R, Lele Z et al (2000) Heat-inducible expression of a reporter gene detected by transient assay in zebrafish. Exp Cell Res 256:282–290. doi: 10.1006/excr.2000.4805 PubMedCrossRefGoogle Scholar
  2. Bajoghli B, Aghaallaei N, Heimbucher T, Czerny T (2004) An artificial promoter construct for heat-inducible misexpression during fish embryogenesis. Dev Biol 271:416–430. doi: 10.1016/j.ydbio.2004.04.006 PubMedCrossRefGoogle Scholar
  3. Bäumer D, Trauner J, Hollfelder D et al (2011) JAK-STAT signalling is required throughout telotrophic oogenesis and short-germ embryogenesis of the beetle Tribolium. Dev Biol 350:169–182. doi: 10.1016/j.ydbio.2010.10.020 PubMedCrossRefGoogle Scholar
  4. Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. FEBS 219:11–23Google Scholar
  5. Berghammer AJ, Weber M, Trauner J, Klingler M (2009) Red flour beetle (Tribolium) germline transformation and insertional mutagenesis. CSHP 2009:pdb.prot5259. doi:  10.1101/pdb.prot5259
  6. Brown SJ, Mahaffey JP, Lorenzen MD et al (1999) Using RNAi to investigate orthologous homeotic gene function during development of distantly related insects. Evol Dev 1:11–15PubMedCrossRefGoogle Scholar
  7. Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R85–R86. doi: 10.1016/S0960-9822(02)00666-8 PubMedCrossRefGoogle Scholar
  8. Cerny AC, Grossmann D, Bucher G, Klingler M (2008) The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. Dev Biol 321:284–294. doi: 10.1016/j.ydbio.2008.05.527 PubMedCrossRefGoogle Scholar
  9. Chen B, Hrycaj S, Schinko JB et al (2011) Pogostick: a new versatile piggyBAC vector for inducible gene over-expression and down-regulation in emerging model systems. PLoS One 6:e18659. doi: 10.1371/journal.pone.0018659 PubMedCrossRefGoogle Scholar
  10. Cunniff N, Morgan WD (1993) Analysis of heat shock element recognition by saturation mutagenesis of the human HSP70. 1 gene promoter. J Biol Chem 268:8317PubMedGoogle Scholar
  11. Cybulsky AV, Takano T, Papillon J et al (2007) The 3’-untranslated region of the Ste20-like kinase SLK regulates SLK expression. Am J Physiol Renal Physiol 292:F845–F852. doi: 10.1152/ajprenal.00234.2006 PubMedCrossRefGoogle Scholar
  12. Gallitano-Mendel A, Finkelstein R (1997) Novel segment polarity gene interactions during embryonic head development in Drosophila. Dev Biol 192:599–613. doi: 10.1006/dbio.1997.8753 PubMedCrossRefGoogle Scholar
  13. Gallitano-Mendel A, Finkelstein R (1998) Ectopic orthodenticle expression alters segment polarity gene expression but not head segment identity in the Drosophila embryo. Dev Biol 199:125–137. doi: 10.1006/dbio.1998.8917 PubMedCrossRefGoogle Scholar
  14. Halloran MC, Sato-Maeda M, Warren JT et al (2000) Laser-induced gene expression in specific cells of transgenic zebrafish. Dev (Camb Engl) 127:1953–1960Google Scholar
  15. Handler AM, Harrell RA (1999) Germline transformation of Drosophila melanogaster with the piggyBac transposon vector. Insect mol biol 8:449–457PubMedCrossRefGoogle Scholar
  16. Hardy ME, Ross LV, Chien C-B (2007) Focal gene misexpression in zebrafish embryos induced by local heat shock using a modified soldering iron. Dev Dyn 236:3071–3076. doi: 10.1002/dvdy.21318 PubMedCrossRefGoogle Scholar
  17. Horn C, Schmid BGM, Pogoda FS, Wimmer EA (2002) Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32:1221–1235PubMedCrossRefGoogle Scholar
  18. Hunt T, Bergsten J, Levkanicova Z et al (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science (New York, NY) 318:1913–1916CrossRefGoogle Scholar
  19. Klingler M (2004) Tribolium. Curr Biol 14:639–640CrossRefGoogle Scholar
  20. Knorr E, Vilcinskas A (2011) Post-embryonic functions of HSP90 in Tribolium castaneum include the regulation of compound eye development. Dev Genes Evol. doi: 10.1007/s00427-011-0379-z
  21. Kotkamp K, Klingler M, Schoppmeier M (2010) Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Dev (Camb Engl) 137:1853–1862. doi: 10.1242/dev.047043 CrossRefGoogle Scholar
  22. Lim CY, Santoso B, Boulay T et al (2004) The MTE, a new core promoter element for transcription by RNA polymerase II. Genes Dev 18:1606–1617. doi: 10.1101/gad.1193404 PubMedCrossRefGoogle Scholar
  23. Lis JT, Simon JA, Sutton CA (1983) New heat shock puffs and beta-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell 35:403–410PubMedCrossRefGoogle Scholar
  24. Lorenzen MD, Brown SJ, Denell RE, Beeman RW (2002) Cloning and characterization of the Tribolium castaneum eye-color genes encoding tryptophan oxygenase and kynurenine 3-monooxygenase. Genetics 160:225–234PubMedGoogle Scholar
  25. Lorenzen MD, Berghammer AJ, Brown SJ et al (2003) piggyBac-mediated germline transformation in the beetle Tribolium castaneum. Insect Mol Biol 12:433–440PubMedCrossRefGoogle Scholar
  26. Margulis BA, Zhivotovski BD, Pospelova TV, Smagina LV (1991) Patterns of protein synthesis in various cells after extreme heat shock. Exp Cell Res 193:219–222. doi: 10.1016/0014-4827(91)90559-D PubMedCrossRefGoogle Scholar
  27. Moczek AP, Cruickshank TE, Shelby A (2006) When ontogeny reveals what phylogeny hides: gain and loss of horns during development and evolution of horned beetles. Evolution 60:2329–2341PubMedGoogle Scholar
  28. Monsma SA, Ard R, Lis JT, Wolfner MF (1988) Localized heat-shock induction in Drosophila melanogaster. J Exp Zool 247:279–284. doi: 10.1002/jez.1402470312 PubMedCrossRefGoogle Scholar
  29. Moseley PL, Wallen ES, McCafferty JD et al (1993) Heat stress regulates the human 70-kDa heat-shock gene through the 3’-untranslated region. Am J Physiol 264:L533–L537PubMedGoogle Scholar
  30. Pan L, Chen S, Weng C et al (2007) Stem cell aging is controlled both intrinsically and extrinsically in the Drosophila ovary. Cell Stem Cell 1:458–469. doi: 10.1016/j.stem.2007.09.010 PubMedCrossRefGoogle Scholar
  31. Pavlopoulos A, Berghammer AJ, Averof M, Klingler M (2004) Efficient transformation of the beetle Tribolium castaneum using the Minos transposable element: quantitative and qualitative analysis of genomic integration events. Genetics 167:737–746. doi: 10.1534/genetics.103.023085 PubMedCrossRefGoogle Scholar
  32. Posnien N, Schinko JB, Kittelmann S, Bucher G (2010) Genetics, development and composition of the insect head—a beetle’s view. Arthropod Struct Dev 39:399–410. doi: 10.1016/j.asd.2010.08.002 PubMedCrossRefGoogle Scholar
  33. Posnien N, Koniszewski NDB, Hein HJ, Bucher G (2011) Candidate gene screen in the red flour beetle Tribolium reveals six3 as ancient regulator of anterior median head and central complex development. PLoS Genetics 7:e1002416. doi: 10.1371/journal.pgen.1002416 PubMedCrossRefGoogle Scholar
  34. Ramos DM, Kamal F, Wimmer EA et al (2006) Temporal and spatial control of transgene expression using laser induction of the hsp70 promoter. BMC Dev Biol 6:55. doi: 10.1186/1471-213X-6-55 PubMedCrossRefGoogle Scholar
  35. Richards S, Gibbs RA, Weinstock GM et al (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955. doi: 10.1038/nature06784 PubMedCrossRefGoogle Scholar
  36. Schinko JB, Kreuzer N, Offen N et al (2008) Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Dev Biol 317:600–613. doi: 10.1016/j.ydbio.2008.03.005 PubMedCrossRefGoogle Scholar
  37. Schinko JB, Weber M, Viktorinova I et al (2010) Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters. BMC Dev Biol 10:53. doi: 10.1186/1471-213X-10-53 PubMedCrossRefGoogle Scholar
  38. Schoppmeier M, Fischer S, Schmitt-Engel C et al (2009) An ancient anterior patterning system promotes caudal repression and head formation in ecdysozoa. Current Biology: CB 19:1811–1815. doi: 10.1016/j.cub.2009.09.026 PubMedCrossRefGoogle Scholar
  39. Schröder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621–625. doi: 10.1038/nature01518.1 PubMedCrossRefGoogle Scholar
  40. Schröder R, Beermann A, Wittkopp N, Lutz R (2008) From development to biodiversity—Tribolium castaneum, an insect model organism for short germband development. Dev Genes Evol 218:119–126. doi: 10.1007/s00427-008-0214-3 PubMedCrossRefGoogle Scholar
  41. Shoji W, Yee CS, Kuwada JY (1998) Zebrafish semaphorin Z1a collapses specific growth cones and alters their pathway in vivo. Dev (Camb Engl) 125:1275–1283Google Scholar
  42. Sokoloff A (1974) The biology of Tribolium. Oxford University Press, OxfordGoogle Scholar
  43. Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578. doi: 10.1007/s00427-004-0434-0 PubMedCrossRefGoogle Scholar
  44. Trauner J, Büning J (2007) Germ-cell cluster formation in the telotrophic meroistic ovary of Tribolium castaneum (Coleoptera, Polyphaga, Tenebrionidae) and its implication on insect phylogeny. Dev Genes Evol 217:13–27. doi: 10.1007/s00427-006-0114-3 PubMedCrossRefGoogle Scholar
  45. Trauner J, Schinko J, Lorenzen MD et al (2009) Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biol 7:73. doi: 10.1186/1741-7007-7-73 PubMedCrossRefGoogle Scholar
  46. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi: 10.1146/annurev.biochem.67.1.509 PubMedCrossRefGoogle Scholar
  47. Wheeler GN, Hamilton FS, Hoppler S (2000) Inducible gene expression in transgenic Xenopus embryos. Curr Biol 10:849–852PubMedCrossRefGoogle Scholar
  48. Xu J, Shu J, Zhang Q (2010) Expression of the Tribolium castaneum (Coleoptera: Tenebrionidae) hsp83 gene and its relation to oogenesis during ovarian maturation. J Genet Genom 37:513–522. doi: 10.1016/S1673-8527(09)60071-0 CrossRefGoogle Scholar
  49. Yost HJ, Petersen RB, Lindquist S (1990) RNA metabolism: strategies for regulation in the heat shock response. Trends Genet 6:223–227PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Johannes Benno Schinko
    • 1
  • Kathrin Hillebrand
    • 2
  • Gregor Bucher
    • 2
  1. 1.Institute of Molecular Biology and BiotechnologyHeraklionGreece
  2. 2.Johann-Friedrich-Blumenbach Institute, Department of Developmental BiologyGeorg-August-University GöttingenGöttingenGermany

Personalised recommendations