Development Genes and Evolution

, Volume 222, Issue 4, pp 189–216 | Cite as

Embryonic development and staging of the cobweb spider Parasteatoda tepidariorum C. L. Koch, 1841 (syn.: Achaearanea tepidariorum; Araneomorphae; Theridiidae)

Original Article

Abstract

The cobweb spider Parasteatoda tepidariorum (C. L. Koch, 1841; syn.: Achaearanea tepidariorum) has become an important study organism in developmental biology and evolution as well as in genetics. Besides Cupiennius salei, it has become a chelicerate model organism for evo-devo studies in recent years. However, a staging system taking into account the entire development, and detailed enough to apply to modern studies, is still required. Here we describe the embryonic development of P. tepidariorum and provide a staging system which allows easy recognition of the distinct stages using simple laboratory tools. Differences between P. tepidariorum and other chelicerates, primarily C. salei, are discussed. Furthermore, cocoon production and the first postembryonic moulting procedure are described. Schematic drawings of all stages are provided to ease stage recognition.

Keywords

Parasteatoda/Achaearanea tepidariorum Embryonic development Staging Embryogenesis Cupiennius salei Morphogenesis 

Abbreviations

A

Anus

AF

Anterior furrow

al

Anterior lateral eye

am

Anterior median eye

ant

Anterior

ASp

Anterior spinneret

AT

Anal tubercle

B

Brain

BL

Book lung system

Bp

Blastoporus

bs

Base

Ch

Chelicera

Cho

Chorion

Cu

Cummulus

cx

Coxa

DF

Dorsal field

dor

Dorsal

Ee

Extra-embryonic region

EgF

Epigastric furrow

en

Endite

f

Fang

fe

Femur

GZ

Growth zone

H

Heart

L

Walking leg

Lab

Labium

lat

Lateral

Lb

Labrum

LB

Limb bud

LF

Lateral furrow

ls

Lateral subdivision

med

Median

ms

Medial subdivision

MSp

Median spinneret

mt

Metatarsus

O

Opisthosomal segment

Op

Opisthosoma

P

Pedipalp

pa

Patella

Pc

Precheliceral region

PcL

Precheliceral lobe

Pet

Petiolus

pl

Posterior lateral eye

pm

Posterior median eye

post

Posterior

Pro

Prosoma

PT

Primary thickening

PS

Prosomal shield

PSp

Posterior spinneret

Sp

Spinneret (Anlage)

Sto

Stomodaeum

T

Tail

ta

Tarsus

Ter

Tergite

ti

Tibia

tr

Trochanter

TrO

Tracheal opening

ven

Ventral

VS

Ventral sulcus

Notes

Acknowledgements

The authors gratefully acknowledge A. McGregor (Oxford), M. Hilbrant (Oxford) and E. Schwager (Boston) for providing specimen of P. tepidariorum; H. Petarus (Botanical Garden, Freiburg) for allowing B. M. to collect spiders in the Botanical Garden; P. Nabavi (Freiburg) for a second determination of the ‘wild’ spiders as they are difficult to separate from Achaearanea simulans; K.-F. Fischbach (Freiburg) for providing his lab space and equipment in a non-bureaucratical and generous manner to B. M.; M. Helmstädter (Freiburg) for help with the cocoon production time lapse movie. N.-M. Prpic-Schäper (Göttingen), H. Oda and Y. Akiyama-Oda (both Osaka) provided very helpful comments on the first draft. Furthermore, H. Oda and Y. Akiyama-Oda allowed us generously to benefit from unpublished results. In addition, this article benefited from the constructive review by two anonymous reviewers. We thank J. Dunlop (Berlin) and R. Ashford (London) for improving the English. The study was supported by the Deutsche Forschungsgemeinschaft (MI 1389/1-1).

Supplementary material

Movie 0

This movie shows the almost complete sequence of cocoon production by a female spider. (MPG 2880 kb)

Movie 1

This movie shows the embryonic development of four embryos at room temperature (about 22°C). The movie starts at early stage 1 with the earliest cleavages and ends in frame 250 with the germ disc stage 3. (MPG 9772 kb)

Movie 2

This movie shows the embryonic development of one embryo at room temperature (about 22°C). The movie starts at late stage 1 with the first cleavages and ends in frame 850 with the stage 10.1 (limb differentiation). (MPG 9457 kb)

427_2012_401_MOESM4_ESM.pdf (1.5 mb)
Supplementary Fig. 1This figure provides a table containing lateral views of all developmental stages of Parasteatoda tepidariorum including the numbers of hours after egg laying (hAEL) at 25°C as well as a comparison to previously defined stages of P. tepidariorum and the number of the more or less correlating stages of Cupiennius salei. (PDF 1529 kb)
427_2012_401_MOESM5_ESM.pdf (306 kb)
Supplementary Fig. 2This figure show schematic drawings of all embryonic stages of Parasteatoda tepidariorum in frontal and lateral view. For practical reasons, the postembryo is just presented in ventral view. 1: stages 1–7, 2: stages 8–13, 3: stages 14–15 and postembryo. The pedipalpal endite is accentuated by darker colour. (PDF 306 kb)

References

  1. Akiyama-Oda Y, Oda H (2003) Early patterning of the spider embryo: a cluster of mesenchymal cells at the cumulus produces Dpp signals received by germ disc epithelial cells. Development 130:1735–1747PubMedCrossRefGoogle Scholar
  2. Akiyama-Oda Y, Oda H (2006) Axis specification in a spider embryo: dpp is required for radial-to-axis symmetry transformation and sog for ventral patterning. Development 133:2347–2357PubMedCrossRefGoogle Scholar
  3. Akiyama-Oda Y, Oda H (2010) Cell migration that orients the dorsoventral axis is coordinated with anteroposterior patterning mediated by Hedgehog signaling in the early spider embryo. Development 137:1263–1273PubMedCrossRefGoogle Scholar
  4. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. Pergamon, Oxford, 495Google Scholar
  5. Barth FG (2002) A spider's world: senses and behaviour. Springer, BerlinGoogle Scholar
  6. Blackburn DC, Conley KW, Plachetzki DC, Kempler K, Battelle B-A, Brown NL (2008) Isolation and expression of Pax6 and atonal homologues in the American horseshoe crab, Limulus polyphemus. Dev Dyn 237:2209–2219PubMedCrossRefGoogle Scholar
  7. Chaw RC, Vance E, Black SD (2007) Gastrulation in the spider Zygiella x-notata involves three distinct phases of cell internalization. Dev Dyn 236:3484–3495PubMedCrossRefGoogle Scholar
  8. Crome W (1963) Embryonalentwicklung ohne “Umrollung” (Reversion) bei Vogelspinnen (Araneae: Orthognatha). Deutsche Entomol Z 10:83–95CrossRefGoogle Scholar
  9. Crome W (1964) Eikokon, Embryonalstadien und frühe Jugendformen von Conothele arboricola Pocock (Araneae: Ctenizidae). Zool Jb Syst 91:411–450Google Scholar
  10. Damen WGM, Hausdorf M, Seyfarth EA, Tautz D (1998) A conserved mode of head segmentation in arthropods revealed by the expression pattern of Hox genes in a spider. Proc Natl Acad Sci USA 95:10665–10670PubMedCrossRefGoogle Scholar
  11. Damen WGM, Saridaki T, Averof M (2002) Diverse adaptations of an ancestral gill: a common evolutionary origin for wings, breathing organs, and spinnerets. Curr Biol 12:1711–1716PubMedCrossRefGoogle Scholar
  12. Dearden PK, Donly C, Grbic M (2002) Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticae. Development 129:5461–5472PubMedCrossRefGoogle Scholar
  13. Doeffinger C, Hartenstein V, Stollewerk A (2010) Compartmentalization of the precheliceral neuroectoderm in the spider Cupiennius salei: development of the arcuate body, the optic ganglia and the mushroom body. J Comp Neur 518:2612–2632PubMedGoogle Scholar
  14. Dohle W (1964) Die embryonale Entwicklung von Glomeris marginata (Villers) im Vergleich zur Entwicklung anderer Diplopoden. Zool Jb Anat 81:241–310Google Scholar
  15. Downes MF (1987) A proposal for standardization of the terms used to describe the early development of spiders, based on the study of Theridion rufipes Lucas (Araneae: Theridiidae). Bull Br Arachnol Soc 7:187–193Google Scholar
  16. Edgecombe GD, Giribet G (2002) Myriapod phylogeny and the relationships of Chilopoda. In: Llorente Bousquets J, Morrone JJ (eds) Biodiversidad, Taxonomía y Biogeografia de Artrópodos de México: Hacia una Síntesis de su Conocimiento, Volumen III. Universidad Nacional Autónoma de México, México, pp 143–168Google Scholar
  17. Foelix RF (2011) Biology of spiders. Oxford University Press, New YorkGoogle Scholar
  18. Gruner H-E (1993) Lehrbuch der speziellen Zoologie (Kaestner, A), Vol. 1: Wirbellose Tiere, 4. Teil: Arthropoda (ohne Insecta). Gustav Fischer, Jena, p 1009Google Scholar
  19. Hajer J, Hrubá L (2007) Wrap attack of the spider Achaearanea tepidariorum (Araneae: Theridiidae) by preying on mealybugs Planococcus citri (Homoptera: Pseudococcidae). J Ethol 25:9–20CrossRefGoogle Scholar
  20. Holm A (1954) Notes on the development of an orthognath spider, Ischnothele karschi Bös & Lenz. Zool Bidr Uppsala 30:199–222Google Scholar
  21. Homann H (1971) Die Augen der Araneae. Anatomie, Ontogenie und Bedeutung für die Systematik (Chelicerata, Arachnida). Z Morph Tiere 69:201–272CrossRefGoogle Scholar
  22. Jin H-J, Kaplan DL (2003) Mechanism of silk processing in insects and spiders. Nature 424:1057–1061PubMedCrossRefGoogle Scholar
  23. Kanayama M, Akiyama-Oda Y, Oda H (2010) Early embryonic development in the spider Achaearanea tepidariorum: microinjection verifies that cellularization is complete before the blastoderm stage. Arth Struct Dev 39:436–445CrossRefGoogle Scholar
  24. Kanayama M, Akiyama-Oda Y, Nishimura O, Tarui H, Agata K, Oda H (2011) Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation. Nature Comm 2:500CrossRefGoogle Scholar
  25. Khila A, Grbic M (2007) Gene silencing in the spider mite Tetranychus urticae: dsRNA and siRNA parental silencing of the Distal-less gene. Dev Genes Evol 217:241–251PubMedCrossRefGoogle Scholar
  26. Kim KW, Roland C (2000) Trophic egg laying in the spider, Amaurobius ferox: mother–offspring interactions and functional value. Behav Proc 50:31–42CrossRefGoogle Scholar
  27. Knight DP, Vollrath F (1999) Liquid crystals and flow elongation in a spider's silk production line. Proc R Soc Lond B 266:519–523CrossRefGoogle Scholar
  28. Larink O (1969) Zur Entwicklungsgeschichte von Petrobius brevistylis (Thysanura, Insecta). Helgoländer Wiss Meeresuntersuchungen 19:111–155CrossRefGoogle Scholar
  29. Lewis RV (2006) Spider silk: ancient ideas for new biomaterials. Chem Rev 106(9):3762–3774PubMedCrossRefGoogle Scholar
  30. Liu Y, Maas A, Waloszek D (2009) Early development of the anterior body region of the grey widow spider Latrodectus geometricus Koch, 1841 (Theridiidae, Araneae). Arth Struct Dev 38:401–416CrossRefGoogle Scholar
  31. Manton SM (1949) Studies on the Onychophora VII. The early embryonic stages of Peripatopsis, and some general considerations concerning the morphology and phylogeny of the Arthropoda. Phil Tran Roy Soc London 233:483–580CrossRefGoogle Scholar
  32. McGregor AP, Hilbrant M, Pechmann M, Schwager EE, Prpic N-M, Damen WGM (2008) Cupiennius salei and Achaearanea tepidariorum: spider models for investigating evolution and development. Bioessays 30:487–498PubMedCrossRefGoogle Scholar
  33. Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jb Syst 91:1–90Google Scholar
  34. Mittmann B (2002) Early neurogenesis in the horseshoe crab Limulus polyphemus and its implication for arthropod relationships. Biol Bull 203:221–222PubMedCrossRefGoogle Scholar
  35. Mittmann B, Scholtz G (2001) Distal-less expression in embryos of Limulus polyphemus (Chelicerata, Xiphosura) and Lepisma saccharina (Insecta, Zygentoma) suggests a role in the development of mechanoreceptors, chemoreceptors, and the CNS. Dev Genes Evol 211:232–243PubMedCrossRefGoogle Scholar
  36. Mittmann B, Scholtz G (2003) Development of the nervous system in the “head” of Limulus polyphemus (Chelicerata: Xiphosura): morphological evidence for a correspondence between the segments of the chelicerae and of the (first) antennae of Mandibulata. Dev Genes Evol 213:9–17PubMedGoogle Scholar
  37. Miyashita M (1987a) Development and egg production of Achaearanea tepidariorum (C. L. Koch) (Araneae, Theridiidae) under long and short photoperiods. J Arachnol 15:51–58Google Scholar
  38. Miyashita M (1987b) Egg production of Achaearanea tepidariorum (C. L. Koch) (Araneae, Theridiidae) in the field in Japan. J Arachnol 15:130–132Google Scholar
  39. Montgomery TH (1903) Studies on the habits of spiders, particularly those of the mating period. Proc Acad Nat Sci Phila 55:59–149Google Scholar
  40. Montgomery TH (1906) The oviposition, cocooning and hatching of an aranead, Theridium tepidariorum C. Koch. Biol Bull 12:1–10CrossRefGoogle Scholar
  41. Morewood W, Hoover K, Sellmer J (2003) Predation by Achaearanea tepidariorum (Araneae: Theridiidae) on Anoplophora glabripennis (Coleoptera:Cerambycidae). Great Lakes Entomol 36:31–34Google Scholar
  42. Oda H, Osamu N, Hirao Y, Agata K, Akiyama-Oda Y (2007) Progressive activation of Delta-Notch signalling from around the blastopore is required to set up a functional caudal lobe in the spider Achaearanea tepidariorum. Development 134:2195–2205PubMedCrossRefGoogle Scholar
  43. Prpic N-M, Damen WGM (2004) Expression patterns of leg genes in the mouthparts of the spider Cupiennius salei (Chelicerata: Arachnida). Dev Genes Evol 214:296–302PubMedCrossRefGoogle Scholar
  44. Prpic N-M, Janssen R, Wigand B, Klingler M, Damen WGM (2003) Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signalling. Dev Biol 264:119–140PubMedCrossRefGoogle Scholar
  45. Prpic N-M, Schoppmeier M, Damen WGM (2008a) Gene silencing via embryonic RNAi in spider embryos. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5070
  46. Prpic N-M, Schoppmeier M, Damen WGM (2008b) Whole-mount in situ hybridization of spider embryos. Cold Spring Harb Protoc. doi:10.1101/pdb.prot5068
  47. Scheibel T (2009) Spinnenseide—Was Spiderman wissen sollte. Biospektrum 01(09):23–25Google Scholar
  48. Schoppmeier M, Damen WGM (2001) Double stranded RNA interference in the spider Cupiennius salei: the role of Distal-less is evolutionary conserved in arthropod appendage formation. Dev Genes Evol 211:76–82PubMedCrossRefGoogle Scholar
  49. Seifert G (1967) Die Cuticula von Polyxenus lagurus L. (Diplopoda, Pselaphognatha). Zoomorphology 59(1):42–53Google Scholar
  50. Seitz K-A (1966) Normale Entwicklung des Arachniden-Embryos Cupiennius salei Keyserling und seine Regulationsbefähigung nach Röntgenbestrahlungen. Zool Jb Anat 83:327–447Google Scholar
  51. Shear WA, Edgecombe GD (2010) Phylogeny and the palaeontological record of Myriapoda. Arth Struct Dev 39:174–190CrossRefGoogle Scholar
  52. Simonnet F, Deutsch J, Quéinnec E (2004) Hedgehog is a segment polarity gene in a crustacean and a chelicerate. Dev Genes Evol 214:537–545PubMedCrossRefGoogle Scholar
  53. Simonnet F, Célérier M-L, Quéinnec E (2006) Orthodenticle and empty spiracles genes are expressed in a segmental pattern in chelicerates. Dev Genes Evol 216:467–480PubMedCrossRefGoogle Scholar
  54. Stollewerk A (2002) Recruitment of cell groups through Delta/Notch signalling during spider neurogenesis. Development 129:5339–5348PubMedCrossRefGoogle Scholar
  55. Stollewerk A, Schoppmeier M, Damen WGM (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865PubMedCrossRefGoogle Scholar
  56. Suzuki H, Kondo A (1995) Early embryonic development, including germ-disc stage, in the theridiid spider Achaearanea japonica (Bös. et Str.). J Morph 224:147–157CrossRefGoogle Scholar
  57. Telford MJ, Thomas RH (1998a) Of mites and zen: expression studies in a chelicerate arthropod confirm zen is a divergent Hox gene. Dev Genes Evol 208:591–594PubMedCrossRefGoogle Scholar
  58. Telford MJ, Thomas RH (1998b) Expression of homeobox genes show chelicerate arthropods retain their deutocerebral segment. PNAS 95:10671–10675PubMedCrossRefGoogle Scholar
  59. Vachon M (1957) Contribution à l`étude du développement postembryonnaire des araignées. Première note. Généralités et nomenclature des stades. Bull Soc Zool France 82:337–354Google Scholar
  60. Weihmann T, Karner M, Full R, Blickhan R (2010) Jumping kinematics in the wandering spider Cupiennius salei. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 196:421–438PubMedCrossRefGoogle Scholar
  61. Weygoldt P (1965) Vergleichend-embryologische Untersuchungen an Pseudoskorpionen III. Neobisium muscorum. Z Morphol Ökol Tiere 55:321–382CrossRefGoogle Scholar
  62. Weygoldt P (1975) Untersuchungen zur Embryologie und Morphologie der Geißelspinne Tarantula marginemaculata C.L. Koch (Arachnida, Amblypygi, Tarantulidae). Zoomorphology 82:137–199CrossRefGoogle Scholar
  63. Weygoldt P (1979) Significance of later embryonic stages and head development in arthropod phylogeny. In: Gupta AD (ed) Arthropod phylogeny. Van Nostrand Reinhold, New YorkGoogle Scholar
  64. Weygoldt P (1985) Ontogeny of the arachnid central nervous system. In: Barth FA (ed) Neurobiology of Arachnids. Springer, Berlin, pp 20–37CrossRefGoogle Scholar
  65. Wilson RS (1962) The control of dragline spinning in the garden spider. Quart J Micr Sci 104:557–571Google Scholar
  66. Wolff C (2009) The embryonic development of the malacostracan crustacean Porcellio scaber (Isopoda, Oniscidea). Dev Genes Evol 219:545–564PubMedCrossRefGoogle Scholar
  67. Wolff C, Hilbrant M (2011) The embryonic development of the Central American wandering spider Cupiennius salei. Front Zool 8:15. doi:10.1186/1742-9994-8-15 PubMedCrossRefGoogle Scholar
  68. Yamazaki K, Akiyama-Oda Y, Oda H (2005) Expression patterns of a twist-related gene in embryos of Achaearanea tepidariorum reveal divergent aspects of mesoderm development in the fly and spider. Zool Sci 22:177–185PubMedCrossRefGoogle Scholar
  69. Yoshikura M (1955) Embryological studies on the liphistiid spider, Heptathela kimurai—part II. Kumamoto J Sci 2:1–86Google Scholar
  70. Yoshikura M (1958) On the development of a purse-web spider, Atypus karschi Dönitz. Kumamoto J Sci 3:73–86Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.School of Biological and Chemical SciencesQueen Mary UniversityLondonUK
  2. 2.Institut für NeurogenetikAlbert Ludwigs-Universität FreiburgFreiburgGermany
  3. 3.Institut für ZoologieHumboldt-Universität zu BerlinBerlinGermany

Personalised recommendations