Development Genes and Evolution

, Volume 222, Issue 2, pp 113–118 | Cite as

“Vacuum-assisted staining”: a simple and efficient method for screening in Drosophila

  • Nicola Berns
  • Innokenty Woichansky
  • Nadine Kraft
  • Ulrike Hüsken
  • Matthias Carl
  • Veit Riechmann
Technical Note

Abstract

The constantly growing number of genetic tools rapidly increases possibilities for various screens in different model organisms and calls for new methods facilitating screen performance. In particular, screening procedures involving fixation and staining of samples are difficult to perform at a genome-wide scale. The time-consuming task to generate these samples makes such screens less attractive. Here, we describe the use of multi-well filter plates for high throughput labellings of different Drosophila organs and zebrafish embryos. Our inexpensive vacuum-assisted staining protocol minimises the risk of sample loss, reduces the amount of staining reagents and drastically decreases labour and repetitive work. The simple handling of the system and the commercial availability of its components makes this method easily applicable to every laboratory.

Keywords

Drosophila Screening In vivo RNAi Follicular epithelium Imaginal disc Larval brain Zebrafish 

Notes

Acknowledgements

We thank T. Sandmann for the idea of using filter plates for our screen and R. Kasper (FGV-Zentrum, Medical Faculty Mannheim) for photographic artwork. The work was supported by grants from the German Research Council to V.R. (SFB 572, B9 and Sachbeihilfe) and M.C. (SFB 488, A18).

References

  1. Amsterdam A, Becker TS (2005) Transgenes as screening tools to probe and manipulate the zebrafish genome. Dev Dyn 234(2):255–268PubMedCrossRefGoogle Scholar
  2. Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9(7):554–566PubMedCrossRefGoogle Scholar
  3. Driever W, Solnica-Krezel L, Schier AF, Neuhauss SC, Malicki J, Stemple DL, Stainier DY, Zwartkruis F, Abdelilah S, Rangini Z, Belak J, Boggs C (1996) A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123:37–46PubMedGoogle Scholar
  4. Franz A, Riechmann V (2010) Stepwise polarisation of the Drosophila follicular epithelium. Dev Biol 338(2):136–147PubMedCrossRefGoogle Scholar
  5. Furriols M, Bray S (2001) A model Notch response element detects suppressor of hairless-dependent molecular switch. Curr Biol: CB 11(1):60–64PubMedCrossRefGoogle Scholar
  6. Hummel T, Schimmelpfeng K, Klämbt C (1997) Fast and efficient egg collection and antibody staining from large numbers of Drosophila strains. Dev Genes Evol 207:131–135CrossRefGoogle Scholar
  7. Inoue D, Wittbrodt J (2011) One for all—a highly efficient and versatile method for fluorescent immunostaining in fish embryos. PLoS One 6(5):e19713PubMedCrossRefGoogle Scholar
  8. Perrimon N, Ni JQ, Perkins L (2010) In vivo RNAi: today and tomorrow. Cold Spring Harb Perspect Biol 2(8):a003640PubMedCrossRefGoogle Scholar
  9. Plickert G, Gajewski M, Gehrke G, Gausepohl H, Schlossherr J, Ibrahim H (1997) Automated in situ detection (AISD) of biomolecules. Dev Genes Evol 207:362–367CrossRefGoogle Scholar
  10. St Johnston D (2002) The art and design of genetic screens: Drosophila melanogaster. Nat Rev Genet 3(3):176–188PubMedCrossRefGoogle Scholar
  11. Westerfield M (1995) The zebrafish book. The University of Oregon Press, EugeneGoogle Scholar
  12. Wilson SW, Ross LS, Parrett T, Easter SS Jr (1990) The development of a simple scaffold of axon tracts in the brain of the embryonic zebrafish, Brachydanio rerio. Development 108(1):121–145PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nicola Berns
    • 1
  • Innokenty Woichansky
    • 1
  • Nadine Kraft
    • 1
  • Ulrike Hüsken
    • 1
  • Matthias Carl
    • 1
  • Veit Riechmann
    • 1
  1. 1.Medical Faculty Mannheim, Department of Cell and Molecular BiologyHeidelberg UniversityMannheimGermany

Personalised recommendations