Development Genes and Evolution

, Volume 222, Issue 1, pp 45–54 | Cite as

Morphological and molecular development of the eyes during embryogenesis of the freshwater planarian Schmidtea polychroa

  • José María Martín-DuránEmail author
  • Francisco Monjo
  • Rafael Romero
Original Article


Photoreception is one of the most primitive sensory functions in metazoans. Despite the diversity of forms and components of metazoan eyes, many studies have demonstrated the existence of a common cellular and molecular basis for their development. Genes like pax6, sine oculis, eyes absent, dachshund, otx, Rx and atonal are known to be associated with the specification and development of the eyes. In planarians, sine oculis, eyes absent and otxA play an essential role during the formation of the eye after decapitation, whereas pax6, considered by many authors as a master control gene for eye formation, does not seem to be involved in adult eye regeneration. Whether this is a peculiarity of adult planarians or, on the contrary, is also found in embryogenesis remains unknown. Herein, we characterize embryonic eye development in the planarian species Schmidtea polychroa using histological sections and molecular markers. Additionally, we analyse the expression pattern of the pax6sine oculiseyes absentdachshund network, and the genes Rx, otxA, otxB and atonal. We demonstrate that eye formation in planarian embryos shows great similarities to adult eye regeneration, both at the cellular and molecular level. We thus conclude that planarian eyes exhibit divergent molecular patterning mechanisms compared to the prototypic ancestral metazoan eye.


Planarian Embryogenesis Eye pax6 



We thank M. Vila-Farré and F. Cebrià for support and comments on this manuscript. JMM-D was an FPU fellow funded by the MICINN (Ministerio de Ciencia e Innovación), Spain. FM is an APIF fellow at the University of Barcelona, Spain. This work was supported by MEC BFU- 2007–63209, Spain, to RR.

Supplementary material

427_2012_389_MOESM1_ESM.pdf (539 kb)
ESM 1 (PDF 539 kb)


  1. Abascal F, Zardoya R, Posada D (2005) Prottest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105PubMedCrossRefGoogle Scholar
  2. Agata K, Soejima Y, Kato K, Kobayashi C, Umesono Y, Watanabe K (1998) Structure of the planarian central nervous system (CNS) revealed by neuronal cell markers. Zool Sci 15:433–440PubMedCrossRefGoogle Scholar
  3. Aguinaldo AM, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RA, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493PubMedCrossRefGoogle Scholar
  4. Almuedo-Castillo M, Saló E, Adell T (2011) Dishevelled is essential for neural connectivity and planar cell polarity in planarians. Proc Nat Acad Sci U S A 108:2813–2818CrossRefGoogle Scholar
  5. Arenas-Mena C, Wong K (2007) HeOtx expression in an indirectly developing polychaete correlates with gastrulation by invagination. Dev Genes Evol 217:373–384PubMedCrossRefGoogle Scholar
  6. Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47:563–571PubMedGoogle Scholar
  7. Arendt D, Wittbrodt J (2001) Reconstructing the eyes of urbilateria. Phil Trans R Soc B 356:1545–1563PubMedCrossRefGoogle Scholar
  8. Arendt D, Tessmar K, de Campos-Baptista MI, Dorresteijn A, Wittbrodt J (2002) Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development 129:1143–1154PubMedGoogle Scholar
  9. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J (2004) Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science 306:869–871PubMedCrossRefGoogle Scholar
  10. Callaerts P, Muñoz-Mármol AM, Glardon S, Castillo E, Sun H, Li WH, Gehring WJ, Saló E (1999) Isolation and expression of a Pax-6 gene in the regenerating and intact planarian Dugesia (G) tigrina. Proc Natl Acad Sci USA 96:558–563PubMedCrossRefGoogle Scholar
  11. Cardona A, Hartenstein V, Romero R (2005) The embryonic development of the triclad Schmidtea polychroa. Dev Genes Evol 215:109–131PubMedCrossRefGoogle Scholar
  12. Carpenter KS, Morita M, Best JB (1974) Ultrastructure of the photoreceptor of the planarian Dugesia dorotocephala. I. Normal eye. Cell Tissue Res 148:143–158PubMedCrossRefGoogle Scholar
  13. Chow RL, Altmann CR, Lang RA, Hemmati-Brivanlou A (1999) Pax6 induces ectopic eyes in a vertebrate. Development 126:4213–4222PubMedGoogle Scholar
  14. Erclik T, Hartenstein V, McInnes RR, Lipshitz HD (2009) Eye evolution at high resolution: the neuron as a unit of homology. Dev Biol 332:70–79PubMedCrossRefGoogle Scholar
  15. Frohman MA (1994) On beyond classic race (rapid amplification of cDNA ends). PCR Meth Appl 4:40–58Google Scholar
  16. Gehring WJ, Ikeo K (1999) Pax6: mastering eye morphogenesis and eye evolution. Trends Genet 15:371–377PubMedCrossRefGoogle Scholar
  17. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (1995) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643PubMedCrossRefGoogle Scholar
  18. Halder G, Callaerts P, Gehring WJ (1995) Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267:1788–1792PubMedCrossRefGoogle Scholar
  19. Hill RE, Favor J, Hogan BLM, Ton CCT, Saunders GF, Hanson IM, Prosser J, Jordan T, Hastie ND, van Heyningen V (1991) Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354:522–525PubMedCrossRefGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) Mrbayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755PubMedCrossRefGoogle Scholar
  21. Hyman LH (1951) The invertebrates, vol II. Platyhelminthes and Rhynchocoela. McGraw-Hill, New York, chap The PlatyhelminthesGoogle Scholar
  22. Iglesias M, Almuedo-Castillo M, Aboobaker A, Saló E (2011) Early planarian brain regeneration is independent of blastema polarity mediated by the Wnt/β-catenin pathway. Dev Biol 358:68–78PubMedCrossRefGoogle Scholar
  23. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCrossRefGoogle Scholar
  24. Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J (2003) Role of pax genes in eye evolution: a cnidarian paxb gene uniting pax2 and pax6 functions. Dev Cell 5:773–785PubMedCrossRefGoogle Scholar
  25. Lapan SW, Reddien PW (2011) dlx and sp6-9 control optic cup regeneration in a prototypic eye. PLoS Genet 7:e1002–e1226CrossRefGoogle Scholar
  26. Le Moigne A (1963) Etude du développement embryonnaire de Polycelis nigra (Turbellarié, Triclade). Bull Soc Zool Fr 88:403–422Google Scholar
  27. Leys SP, Degnan BM (2001) Cytological basis of photosensitive behaviour in a sponge larva. Biol Bull 201:323–338PubMedCrossRefGoogle Scholar
  28. Loosli F, Kmita-Cunisse M, Gehring WJ (1996) Isolation of a Pax-6 homolog from the ribbonworm Lineus sanguineus. Proc Natl Acad Sci U S A 93:2658–2663PubMedCrossRefGoogle Scholar
  29. Mannini L, Rossi L, Deri P, Gremigni V, Salvetti A, Saló E, Batistoni R (2004) Djeyes absent (Djeya) controls prototypic planarian eye regeneration by cooperating with the transcription factor Djsix-1. Dev Biol 269:346–359PubMedCrossRefGoogle Scholar
  30. Mannini L, Deri P, Picchi J, Batistoni R (2008) Expression of a retinal homeobox (Rx) gene during planarian regeneration. Int J Dev Biol 52:1113–1117PubMedCrossRefGoogle Scholar
  31. Martín-Durán JM, Romero R (2011) Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa. Dev Biol 352:164–176PubMedCrossRefGoogle Scholar
  32. Martín-Durán JM, Duocastella M, Serra P, Romero R (2008) New method to deliver exogenous material into developing planarian embryos. J Exp Zool (Mol Dev Evol) 310B:668–681CrossRefGoogle Scholar
  33. Martín-Durán JM, Amaya E, Romero R (2010) Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa. Dev Biol 340:145–158PubMedCrossRefGoogle Scholar
  34. Nishimura K, Kitamura Y, Inoue T, Umesono Y, Yoshimoto K, Takeuchi K, Taniguchi T, Agata K (2007) Identification and distribution of tryptophan hydroxylase (tph)-positive neurons in the planarian Dugesia japonica. Nuerosci Res 59:101–106CrossRefGoogle Scholar
  35. Passamaneck YJ, Furchheim N, Hejnol A, Martindale MQ, Luter C (2011) Ciliary photoreceptors in the cerebral eyes of a protostome larva. EvoDevo 2:6PubMedCrossRefGoogle Scholar
  36. Pineda D, González J, Callaerts P, Ikeo K, Gehring WJ, Saló E (2000) Searching for the prototypic eye genetic network: sine oculis is essential for eye regeneration in planarians. Proc Natl Acad Sci U S A 97:4525–4529PubMedCrossRefGoogle Scholar
  37. Pineda D, González J, Marsal M, Saló E (2001) Evolutionary conservation of the initial eye genetic pathway in planarians. Belg J Zool 131(Supplement 1):77–82Google Scholar
  38. Pineda D, Rossi L, Batistoni R, Salvetti A, Marsal M, Gremigni V, Falleni A, González-Linares J, Deri P, Saló E (2002) The genetic network of prototypic planarian eye regeneration is pax6 independent. Development 129:1423–1434PubMedGoogle Scholar
  39. Quigley IK, Xie X, Shankland M (2007) Hau-Pax6A expression in the central nervous system of the leech embryo. Dev Genes Evol 217:459–468PubMedCrossRefGoogle Scholar
  40. Quigley IK, Schmerer MW, Shankland M (2010) A member of the six gene family promotes the specification of p cell fates in the o/p equivalence group of the leech Helobdella. Dev Biol 344:319–330PubMedCrossRefGoogle Scholar
  41. Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789PubMedCrossRefGoogle Scholar
  42. Ronquist F, Huelsenbeck JP (2003) Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  43. Rossi L, Batistoni R, Salvetti A, Deri P, Bernini F, Andreoli I, Falleni A, Gremigni V (2001) Molecular aspects of cell proliferation and neurogenesis in planarians. Belg J Zool 131(Supplement 1):83–87Google Scholar
  44. Ruzickova J, Piatigorsky J, Kozmik Z (2009) Eye-specific expression of an ancestral jellyfish paxb gene interferes with pax6 function despite its conserved pax6/pax2 characteristics. Int J Dev Biol 53:469–482PubMedCrossRefGoogle Scholar
  45. Sakai F, Agata K, Orii H, Watanabe K (2000) Organization and regeneration ability of spontaneous supernumerary eyes in planarians—eye regeneration field and pathway selection by optic nerves. Zool Sci 17:375–381PubMedGoogle Scholar
  46. Salvini-Plawen L, Mayr E (1961) Evolutionary biology, vol 10. Plenum Press, New York, pp 207–263Google Scholar
  47. Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, Oxford, pp 118–147, chap Sensory organsCrossRefGoogle Scholar
  48. Sluys R (1989) A monograph of the marine triclads. Rotterdam & Brookfield, RotterdamGoogle Scholar
  49. Steinmetz PRH, Kostyuchenko RP, Fischer A, Arendt D (2011) The segmental pattern of otx, gbx, and Hox genes in the annelid Platynereis dumerilii. Evol Dev 13:72–79PubMedCrossRefGoogle Scholar
  50. Stevens NM (1904) On the germ cells and the embryology of Planaria simplicissima. Proc Acad Nat Sci Philadelphia 56:208–220Google Scholar
  51. Takeda H, Nishimura K, Agata K (2009) Planarians maintain a constant ratio of different cell types during changes in body size by using the stem cell system. Zool Sci 26:805–813PubMedCrossRefGoogle Scholar
  52. Tomarev SI, Callaerts P, Kos L, Zinovieva R, Halder G, Gehring WJ, Piatigorsky J (1997) Squid Pax-6 and eye development. Proc Natl Acad Sci U S A 94:2421–2426PubMedCrossRefGoogle Scholar
  53. Tomer R, Denes AS, Tessmar-Raible K, Arendt D (2010) Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium. Cell 142:800–809PubMedCrossRefGoogle Scholar
  54. Umesono Y, Watanabe K, Agata K (1997) A planarian orthopedia homolog is specifically expressed in the branch region of both the mature and regenerating brain. Develop Growth Differ 39:723–727CrossRefGoogle Scholar
  55. Umesono Y, Watanabe K, Agata K (1999) Distinct structural domains in the planarian brain defined by the expression of evolutionarily conserved homeobox genes. Dev Genes Evol 209:31–39PubMedCrossRefGoogle Scholar
  56. Vopalensky P, Kozmik Z (2009) Eye evolution: common use and independent recruitment of genetic components. Phil Trans R Soc B 364:2819–2832PubMedCrossRefGoogle Scholar
  57. Winchell CJ, Valencia JE, Jacobs DK (2010) Expression of Distal-les, dachshund, and optomotor blind in Neanthes arenaceodentata (Annelida, Nereididae) does not support homology of appendage-forming mechanisms across the Bilateria. Dev Genes Evol 220:275–295PubMedCrossRefGoogle Scholar
  58. Yamamoto H, Agata K (2011) Optic chiasm formation in planarian I: cooperative netrin- and robo-mediated signals are required for the early stage of optic chiasm formation. Develop Growth Differ 53:300–311CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • José María Martín-Durán
    • 1
    • 2
    Email author
  • Francisco Monjo
    • 1
  • Rafael Romero
    • 1
  1. 1.Departament de GenèticaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Sars International Centre for Marine Molecular BiologyUniversity of BergenBergenNorway

Personalised recommendations