Development Genes and Evolution

, Volume 221, Issue 5–6, pp 297–308 | Cite as

Convergent, modular expression of ebony and tan in the mimetic wing patterns of Heliconius butterflies

  • Laura C. Ferguson
  • Luana Maroja
  • Chris D. JigginsEmail author
Original Article


The evolution of pigmentation in vertebrates and flies has involved repeated divergence at a small number of genes related to melanin synthesis. Here, we study insect melanin synthesis genes in Heliconius butterflies, a group characterised by its diversity of wing patterns consisting of black (melanin), and yellow and red (ommochrome) pigmented scales. Consistent with their respective biochemical roles in Drosophila melanogaster, ebony is upregulated in non-melanic wing regions destined to be pigmented red whilst tan is upregulated in melanic regions. Wing regions destined to be pigmented yellow, however, are downregulated for both genes. This pattern is conserved across multiple divergent and convergent phenotypes within the Heliconii, suggesting a conserved mechanism for the development of black, red and yellow pattern elements across the genus. Linkage mapping of five melanin biosynthesis genes showed that, in contrast to other organisms, these genes do not control pattern polymorphism. Thus, the pigmentation genes themselves are not the locus of evolutionary change but lie downstream of a wing pattern regulatory factor. The results suggest a modular system in which particular combinations of genes are switched on whenever red, yellow or black pattern elements are favoured by natural selection for diverse and mimetic wing patterns.


Pigmentation Heliconius Ebony Tan Mimicry 



We thank Nick Mundy for the use of his qRT-PCR machine, and Simon Baxter and Claire Webster for contributing to linkage mapping. Breeding was carried out with assistance from R. Merrill, and Moises Abanto. Ana Portugal and Grace Wu assisted with dissections. This work was funded by a NERC Ph.D. Studentship to L. Ferguson, BBSRC support of L. Maroja and Leverhulme Trust Research Leadership grant and a Royal Society Fellowship to C. Jiggins.

Supplementary material

427_2011_380_Fig5_ESM.jpg (103 kb)
Supplementary Fig. 1

Increased resolution of melanic staging for the Heliconius. As melanogenesis is rapid in H. melpomene (e.g. approximately 30 min, separate the early and mid-melanic stages), we increased the resolution of developmental staging around melanisation to reduce variability between biological replicates. From dissection of 117 individuals, the early melanin stage was divided into three and the mid-melanin stage into five. EM1 hint of melanic pigment in distal portion of the wing, EM2 pale melanic pigment in distal portion of the wing, EM3 dark melanic pigment in distal portion of the wing, MM1 pale melanic pigment in proximal portion of the wing, MM2 dark melanic pigment in proximal portion of the wing, MM3 few veins pigmented in distal portion of the wing, MM4 most veins pigmented in distal portion of the wing, MM5 all veins pigmented in distal portion of the wing. Only wings from mid-melanin stages 1–3 were used for further qRT-PCR. (JPEG 103 kb)

427_2011_380_MOESM1_ESM.tif (8.7 mb)
High-resolution image (TIFF 8921 kb)
427_2011_380_Fig6_ESM.jpg (57 kb)
Supplementary Fig. 2

Example of dissected regions for comparative qRT-PCR. Individuals shown were included in the replicates used (JPEG 57 kb)

427_2011_380_MOESM2_ESM.tif (2.2 mb)
High-resolution image (TIFF 2211 kb)
427_2011_380_MOESM3_ESM.doc (40 kb)
Supplementary Table 1 Maximum expression levels of pigmentation genes relative to the control as recorded by qRT-PCR (DOC 39 kb)


  1. Bates HW (1862) Contributions to an insect faunaof the Amazon valley. Lepidoptera. Heliconidae. Trans Linn Soc Lond 23:495–566CrossRefGoogle Scholar
  2. Baxter SW, Nadeau NJ, Maroja LS, Wilkinson P, Counterman BA, Dawson A, Beltran M et al (2010) Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in the Heliconius melpomene Clade. PLoS Genet 6(2):e1000794PubMedCrossRefGoogle Scholar
  3. Beldade P, Brakefield PM (2002) The genetics and evo-devo of butterfly wing patterns. Nat Rev Genet 3(6):442–452PubMedGoogle Scholar
  4. Beldade P, Saenko SV, Pul N, Long AD (2009) A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome. PLoS Genet 5(2):e1000366PubMedCrossRefGoogle Scholar
  5. Beltran M, Jiggins CD, Brower A, Bermingham E, Mallet J (2007) Do pollen feeding, pupal-mating and larval gregariousness have a single origin in Heliconius butterflies? Inferences from multilocus DNA sequence data. Biol J Linn Soc 92(2):221–239CrossRefGoogle Scholar
  6. Brisson JA, Templeton AR, Duncan I (2004) Population genetics of the developmental gene optomotor-blind (omb) in Drosophila polymorpha: evidence for a role in abdominal pigmentation variation. Genetics 168(4):1999–2010PubMedCrossRefGoogle Scholar
  7. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500PubMedCrossRefGoogle Scholar
  8. Counterman BA, Araujo-Perez F, Hines HM, Baxter SW, Morrison CM, Lindstrom DP, Papa R et al (2010) Genomic hotspots for adaptation: the population genetics of Mullerian mimicry in Heliconius erato. PLoS Genet 6(2):p.e1000796CrossRefGoogle Scholar
  9. Darwin-Initiative (2007) Tropical andean butterfly diversity project—databases. Available at Accessed 23 May 2011
  10. Ferguson LC, Jiggins CD (2009) Shared and divergent expression domains on mimetic Heliconius wings. Evol Dev 11(5):498–512PubMedCrossRefGoogle Scholar
  11. Ferguson LC, Lee SF, Chamberlain N, Nadeau N, Joron M, Baxter SW, Wilkinson P et al (2010) Characterization of a hotspot for mimicry: assembly of a butterfly wing transcriptome to genomic sequence at the HmYb/Sb locus. Mol Ecol 19(Suppl 1):240–254PubMedCrossRefGoogle Scholar
  12. Ferguson LC, Green J, Surridge A, Jiggins CD (2011) Evolution of the insect yellow gene family. Mol Biol Evol 28(1):257–272PubMedCrossRefGoogle Scholar
  13. Ffrench-Constant RH, Koch PB (2003) Mimicry and melanism in swollowtail butterflies: toward a molecular understanding. In: Boggs CL, Watt WB, Ehrlich PB (eds) Butterflies: ecology and evolution taking flight. University of Chicago Press, ChicagoGoogle Scholar
  14. Futahashi R, Fujiwara H (2005) Melanin-synthesis enzymes coregulate stage-specific larval cuticular markings in the swallowtail butterfly, Papilio xuthus. Dev Genes Evol 215(10):519–529PubMedCrossRefGoogle Scholar
  15. Futahashi R, Sato J, Meng Y, Okamoto S, Daimon T, Yamamoto K, Suetsugu Y et al (2008) Yellow and ebony are the responsible genes for the larval color mutants of the silkworm Bombyx mori. Genetics 180(4):1995–2005PubMedCrossRefGoogle Scholar
  16. Futahashi R, Banno Y, Fujiwara H (2010) Caterpillar color patterns are determined by a two-phase melanin gene prepatterning process: new evidence from tan and laccase2. Evol Dev 12(2):157–167PubMedCrossRefGoogle Scholar
  17. Gilbert LE (1988) Correlations of ultrastructure and pigmentation suggest how genes control development of the wing scales of Heliconius butterflies. J Res Lepidoptera 26:141–160Google Scholar
  18. Gilbert LE (2003) Adaptive novelty through introgression in Heliconius wing patterns: evidence for a shared genetic “tool box” from synthetic hybrid zones and a theory of diversification. In: Boggs CL, Watt WB, Ehrlich PB (eds) Butterflies: ecology and evolution taking flight. University of Chicago Press, ChicagoGoogle Scholar
  19. Gompel N, Carroll SB (2003) Genetic mechanisms and constraints governing the evolution of correlated traits in drosophilid flies. Nature 424(6951):931–935PubMedCrossRefGoogle Scholar
  20. Gompel N, Prud’homme B, Wittkopp PJ, Kassner VA, Carroll SB (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433(7025):481–487PubMedCrossRefGoogle Scholar
  21. Han Q, Fang J, Ding H, Johnson JK, Christensen BM, Li J (2002) Identification of Drosophila melanogaster yellow-f and yellow-f2 proteins as dopachrome-conversion enzymes. Biochem J 368(Pt 1):333–340PubMedCrossRefGoogle Scholar
  22. Hoekstra HE (2006) Genetics, development and evolution of adaptive pigmentation in vertebrates. Heredity 97(3):222–234PubMedCrossRefGoogle Scholar
  23. Janssen JM, Monteiro A, Brakefield PM (2001) Correlations between scale structure and pigmentation in butterfly wings. Evol Dev 3(6):415–423PubMedCrossRefGoogle Scholar
  24. Jeong S, Rebeiz M, Andolfatto P, Werner T, True JR, Carroll SB (2008) The evolution of gene regulation underlies a morphological difference between two Drosophila sister species. Cell 132(5):783–793PubMedCrossRefGoogle Scholar
  25. Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature 411(6835):302–305PubMedCrossRefGoogle Scholar
  26. Jiggins CD, Mavarez J, Beltrán M, McMillan WO, Johnston JS, Bermingham E (2005) A genetic linkage map of the mimetic butterfly Heliconius melpomene. Genetics 171(2):557–570PubMedCrossRefGoogle Scholar
  27. Joron M, Papa R, Beltrán M, Chamberlain N, Mavárez J, Baxter SW, Abanto M et al (2006a) A conserved supergene locus controls colour pattern diversity in Heliconius butterflies. PLoS Biol 4(10):p.e303CrossRefGoogle Scholar
  28. Joron M, Jiggins CD, Papanicolaou A, McMillan WO (2006b) Heliconius wing patterns: an evo-devo model for understanding phenotypic diversity. Heredity 97(3):157–167PubMedCrossRefGoogle Scholar
  29. Kapan DD (2001) Three-butterfly system provides a field test of mullerian mimicry. Nature 409(6818):338–340PubMedCrossRefGoogle Scholar
  30. Kingsley EP, Manceau M, Wiley CD, Hoekstra HE (2009) Melanism in peromyscus is caused by independent mutations in Agouti. PloS One 4(7):e6435PubMedCrossRefGoogle Scholar
  31. Koch PB, Behnecke B, Ffrench-Constant RH (2000a) The molecular basis of melanism and mimicry in a swallowtail butterfly. Curr Biol 10(10):591–594PubMedCrossRefGoogle Scholar
  32. Koch PB, Lorenz U, Brakefield PM, Ffrench-Constant RH (2000b) Butterfly wing pattern mutants: developmental heterochrony and co-ordinately regulated phenotypes. Dev Genes Evol 210(11):536–544PubMedCrossRefGoogle Scholar
  33. Kopp A, Duncan I, Godt D, Carroll SB (2000) Genetic control and evolution of sexually dimorphic characters in Drosophila. Nature 408(6812):553–559PubMedCrossRefGoogle Scholar
  34. Kopp A, Graze RM, Xu S, Carroll SB, Nuzhdin SV (2003) Quantitative trait loci responsible for variation in sexually dimorphic traits in Drosophila melanogaster. Genetics 163(2):771–787PubMedGoogle Scholar
  35. Martin A, Reed RD (2010) Wingless and aristaless2 define a developmental ground plan for moth and butterfly wing pattern evolution. Mol Biol Evol 27(12):2864–2878PubMedCrossRefGoogle Scholar
  36. Mundy NI (2005) A window on the genetics of evolution: MC1R and plumage colouration in birds. Proc R Soc B Biol Sci 272(1573):1633–1640CrossRefGoogle Scholar
  37. Nachman MW (2005) The genetic basis of adaptation: lessons from concealing coloration in pocket mice. Genetica 123(1–2):125–136PubMedCrossRefGoogle Scholar
  38. Nijhout HF (1991) The development and evolution of butterfly wing patterns. Smithsonian Institution Press, WashingtonGoogle Scholar
  39. Pool JE, Aquadro CF (2007) The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol Ecol 16(14):2844–2851PubMedCrossRefGoogle Scholar
  40. Prud’homme B, Gompel N, Rokas A, Kassner VA, Williams TM, Yeh S-D, True JR et al (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440(7087):1050–1053PubMedCrossRefGoogle Scholar
  41. Rebeiz M, Pool JE, Kassner VA, Aquadro CF, Carroll SB (2009) Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population. Science 326(5960):1663–1667PubMedCrossRefGoogle Scholar
  42. Reed RD, McMillan WO, Nagy LM (2008) Gene expression underlying adaptive variation in Heliconius wing patterns: non-modular regulation of overlapping cinnabar and vermilion prepatterns. Proc R Soc B Biol Sci 275(1630):37–46CrossRefGoogle Scholar
  43. Reed RD, Papa R, Martin A, Hines, Heather M, Counterman BA, Pardo-Diaz C, Jiggins CD et al (2011) Optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Sci N Y 333(6046):1137–1141CrossRefGoogle Scholar
  44. Salazar C, Baxter SW, Pardo-Diaz C, Wu G, Surridge A, Linares M, Bermingham E et al (2010) Genetic evidence for hybrid trait speciation in Heliconius butterflies. PLoS Genet 6(4):p.e1000930CrossRefGoogle Scholar
  45. Savard J, Tautz D, Richards S, Weinstock GM, Gibbs RA, Werren JH, Tettelin H et al (2006) Phylogenomic analysis reveals bees and wasps (Hymenoptera) at the base of the radiation of holometabolous insects. Genome Res 16(11):1334–1338PubMedCrossRefGoogle Scholar
  46. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3):502–504PubMedCrossRefGoogle Scholar
  47. Sheppard PM, Turner JRG, Brown KS, Benson WW, Singer MC (1985) Genetics and the evolution of muellerian mimicry in Heliconius butterflies. Philos Trans R Soc B-Biol Sci 308(1137):433–610CrossRefGoogle Scholar
  48. Steiner CC, Weber JN, Hoekstra HE (2007) Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol 5(9):p.e219CrossRefGoogle Scholar
  49. Takahashi A, Takahashi K, Ueda R, Takano-Shimizu T (2007) Natural variation of ebony gene controlling thoracic pigmentation in Drosophila melanogaster. Genetics 177(2):1233–1237PubMedCrossRefGoogle Scholar
  50. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599PubMedCrossRefGoogle Scholar
  51. True JR (2003) Insect melanism: the molecules matter. Trends Ecol Evol 18(12):640–647CrossRefGoogle Scholar
  52. True JR, Edwards KA, Yamamoto D, Carroll SB (1999) Drosophila wing melanin patterns form by vein-dependent elaboration of enzymatic prepatterns. Curr Biol 9(23):1382–1391PubMedCrossRefGoogle Scholar
  53. True JR, Yeh S-D, Hovemann BT, Kemme T, Meinertzhagen IA, Edwards TN, Liou S-R et al (2005) Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genet 1(5):p.e63CrossRefGoogle Scholar
  54. Turner JRG, Sheppard PM (1975) Absence of crossing-over in female butterflies (Heliconius). Heredity 34(2):265–269PubMedCrossRefGoogle Scholar
  55. van’t Hof AE, Saccheri IJ (2010) Industrial melanism in the peppered moth is not associated with genetic variation in canonical melanisation gene candidates. PLoS ONE 5(5):e10889PubMedCrossRefGoogle Scholar
  56. Van’t Hof AE, Edmonds N, Dalíková M, Marec F, Saccheri IJ (2011) Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 332(6032):958PubMedCrossRefGoogle Scholar
  57. Williams TM, Selegue JE, Werner T, Gompel N, Kopp A, Carroll SB (2008) The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134(4):610–623PubMedCrossRefGoogle Scholar
  58. Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Biol Dev Biol 20(1):65–71CrossRefGoogle Scholar
  59. Wittkopp PJ, True JR, Carroll SB (2002a) Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns. Development 129(8):1849–1858PubMedGoogle Scholar
  60. Wittkopp PJ, Vaccaro K, Carroll SB (2002b) Evolution of yellow gene regulation and pigmentation in Drosophila. Curr Biol 12(18):1547–1556PubMedCrossRefGoogle Scholar
  61. Wittkopp PJ, Carroll SB, Kopp A (2003a) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19(9):495–504PubMedCrossRefGoogle Scholar
  62. Wittkopp PJ, Williams BL, Selegue JE, Carroll SB (2003b) Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc Natl Acad Sci U S A 100(4):1808–1813PubMedCrossRefGoogle Scholar
  63. Wittkopp PJ, Stewart EE, Arnold LL, Neidert AH, Haerum BK, Thompson EM, Akhras S et al (2009) Intraspecific polymorphism to interspecific divergence: genetics of pigmentation in Drosophila. Science 326(5952):540–544PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Laura C. Ferguson
    • 1
    • 2
  • Luana Maroja
    • 3
  • Chris D. Jiggins
    • 1
    Email author
  1. 1.Department of ZoologyUniversity of CambridgeCambridgeUK
  2. 2.Department of ZoologyUniversity of OxfordOxfordUK
  3. 3.Biology Department, Thompson Biology LaboratoryWilliams CollegeWilliamstownUSA

Personalised recommendations