Advertisement

Development Genes and Evolution

, Volume 221, Issue 3, pp 157–166 | Cite as

HpSumf1 is involved in the activation of sulfatases responsible for regulation of skeletogenesis during sea urchin development

  • Tetsushi Sakuma
  • Kazuya Ohnishi
  • Kazumasa Fujita
  • Hiroshi Ochiai
  • Naoaki Sakamoto
  • Takashi Yamamoto
Original Article

Abstract

Sulfatases such as arylsulfatase and heparan sulfate 6-O-endosulfatase play important roles in morphogenesis during sea urchin development. For the activation of these sulfatases, Cα-formylglycine formation by sulfatase modifying factor (Sumf) is required. In this study, to clarify the regulatory mechanisms for the activation of sulfatases during sea urchin development, we examined the expression and function of the Hemicentrotus pulcherrimus homologs of Sumf1 and Sumf2 (HpSumf1 and HpSumf2, respectively). Expression of HpSumf1 but not HpSumf2 mRNA was dynamically changed during early development. Functional analyses of recombinant HpSumf1 and HpSumf2 using HEK293T cells expressing mouse arylsulfatase A (ArsA) indicated that HpSumf1 and HpSumf2 were both able to activate mammalian ArsA. Knockdown of HpSumf1 using morpholino antisense oligonucleotides caused abnormal spicule formation in the sea urchin embryo. Injection of HpSumf2 mRNA had no effect on skeletogenesis, while injection of HpSumf1 mRNA induced severe supernumerary spicule formation. Taken together, these findings suggest that HpSumf1 is involved in the activation of sulfatases required for control of skeletogenesis.

Keywords

Sulfatase Sulfatase modifying factor Skeletogenesis Sea urchin 

Notes

Acknowledgements

The authors thank Dr M. Kiyomoto (Tateyama Marine Laboratory, Ochanomizu University) for supplying the live sea urchins. This work was supported by Grants-in-Aid for Scientific Research (C) from the Ministry of Education, Science, Sports and Culture, Japan.

References

  1. Akasaka K, Ueda T, Higashinakagawa T, Yamada K, Shimada H (1990) Spatial patterns of arylsulfatase mRNA expression in sea urchin embryo. Dev Growth Differ 32:9–13CrossRefGoogle Scholar
  2. Annunziata I, Bouche V, Lombardi A, Settembre C, Ballabio A (2007) Multiple sulfatase deficiency is due to hypomorphic mutations of the SUMF1 gene. Hum Mutat 28:928PubMedCrossRefGoogle Scholar
  3. Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643PubMedGoogle Scholar
  4. Bergeron KF, Xu X, Brandhorst BP (2011) Oral–aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans. Mech Dev 128:71–89PubMedCrossRefGoogle Scholar
  5. Buono M, Cosma MP (2010) Sulfatase activities towards the regulation of cell metabolism and signaling in mammals. Cell Mol Life Sci 67:769–780PubMedCrossRefGoogle Scholar
  6. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  7. Cosma MP, Pepe S, Annunziata I, Newbold RF, Grompe M, Parenti G, Ballabio A (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113:445–456PubMedCrossRefGoogle Scholar
  8. Dierks T, Lecca MR, Schlotterhose P, Schmidt B, von Figura K (1999) Sequence determinants directing conversion of cysteine to formylglycine in eukaryotic sulfatases. EMBO J 18:2084–2091PubMedCrossRefGoogle Scholar
  9. Dierks T, Schmidt B, Borissenko LV, Peng J, Preusser A, Mariappan M, von Figura K (2003) Multiple sulfatase deficiency is caused by mutations in the gene encoding the human Cα-formylglycine generating enzyme. Cell 113:435–444PubMedCrossRefGoogle Scholar
  10. Dierks T, Dickmanns A, Preusser-Kunze A, Schmidt B, Mariappan M, von Figura K, Ficner R, Rudolph MG (2005) Molecular basis for multiple sulfatase deficiency and mechanism for formylglycine generation of the human formylglycine-generating enzyme. Cell 121:541–552PubMedCrossRefGoogle Scholar
  11. Duboc V, Röttinger E, Besnardeau L, Lepage T (2004) Nodal and BMP2/4 signaling organizes the oral–aboral axis of the sea urchin embryo. Dev Cell 6:397–410PubMedCrossRefGoogle Scholar
  12. Fraldi A, Biffi A, Lombardi A, Visigalli I, Pepe S, Settembre C, Nusco E, Auricchio A, Naldini L, Ballabio A, Cosma MP (2007) SUMF1 enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochem J 403:305–312PubMedCrossRefGoogle Scholar
  13. Freeman SD, Moore WM, Guiral EC, Holme AD, Turnbull JE, Pownall ME (2008) Extracellular regulation of developmental cell signaling by XtSulf1. Dev Biol 320:436–445PubMedCrossRefGoogle Scholar
  14. Fujita K, Takechi E, Sakamoto N, Sumiyoshi N, Izumi S, Miyamoto T, Matsuura S, Tsurugaya T, Akasaka K, Yamamoto T (2010a) HpSulf, a heparan sulfate 6-O-endosulfatase, is involved in the regulation of VEGF signaling during sea urchin development. Mech Dev 127:235–245PubMedCrossRefGoogle Scholar
  15. Fujita K, Teramura N, Hattori S, Irie S, Mitsunaga-Nakatsubo K, Akimoto Y, Sakamoto N, Yamamoto T, Akasaka K (2010b) Mammalian arylsulfatase A functions as a novel component of the extracellular matrix. Connect Tissue Res 51:388–396PubMedCrossRefGoogle Scholar
  16. Gande SL, Mariappan M, Schmidt B, Pringle TH, von Figura K, Dierks T (2008) Paralog of the formylglycine-generating enzyme—retention in the endoplasmic reticulum by canonical and noncanonical signals. FEBS J 275:1118–1130PubMedCrossRefGoogle Scholar
  17. Haag ES, Raff RA (1998) Isolation and characterization of three mRNAs enriched in embryos of the direct-developing sea urchin Heliocidaris erythrogramma: evolution of larval ectoderm. Dev Genes Evol 208:188–204PubMedCrossRefGoogle Scholar
  18. Hanson SR, Best MD, Wong CH (2004) Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 43:5736–5763PubMedCrossRefGoogle Scholar
  19. Keinanen BM, Nelson K, Daniel WL, Roque JM (1983) Genetic analysis of murine arylsulfatase C and steroid sulfatase. Genetics 105:191–206PubMedGoogle Scholar
  20. Landgrebe J, Dierks T, Schmidt B, von Figura K (2003) The human SUMF1 gene, required for posttranslational sulfatase modification, defines a new gene family which is conserved from pro- to eukaryotes. Gene 316:47–56PubMedCrossRefGoogle Scholar
  21. Mariappan M, Preusser-Kunze A, Balleininger M, Eiselt N, Schmidt B, Gande SL, Wenzel D, Dierks T, von Figura K (2005) Expression, localization, structural, and functional characterization of pFGE, the paralog of the Cα-formylglycine-generating enzyme. J Biol Chem 280:15173–15179PubMedCrossRefGoogle Scholar
  22. Mariappan M, Gande SL, Radhakrishnan K, Schmidt B, Dierks T, von Figura K (2008) The non-catalytic N-terminal extension of formylglycine-generating enzyme is required for its biological activity and retention in the endoplasmic reticulum. J Biol Chem 283:11556–11564PubMedCrossRefGoogle Scholar
  23. Minokawa T, Rast JP, Arenas-Mena C, Franco CB, Davidson EH (2004) Expression patterns of four different regulatory genes that function during sea urchin development. Gene Expr Patterns 4:449–456PubMedCrossRefGoogle Scholar
  24. Mitsunaga-Nakatsubo K, Akasaka K, Akimoto Y, Akiba E, Kitajima T, Tomita M, Hirano H, Shimada H (1998) Arylsulfatase exists as non-enzymatic cell surface protein in sea urchin embryos. J Exp Zool 280:220–230PubMedCrossRefGoogle Scholar
  25. Mitsunaga-Nakatsubo K, Akimoto Y, Kawakami H, Akasaka K (2009) Sea urchin arylsulfatase, an extracellular matrix component, is involved in gastrulation during embryogenesis. Dev Genes Evol 219:281–288PubMedCrossRefGoogle Scholar
  26. Ochiai H, Sakamoto N, Momiyama A, Akasaka K, Yamamoto T (2008) Analysis of cis-regulatory elements controlling spatio-temporal expression of T-brain gene in sea urchin, Hemicentrotus pulcherrimus. Mech Dev 125:2–17PubMedCrossRefGoogle Scholar
  27. Preusser-Kunze A, Mariappan M, Schmidt B, Gande SL, Mutenda K, Wenzel D, von Figura K, Dierks T (2005) Molecular characterization of the human Cα-formylglycine-generating enzyme. J Biol Chem 280:14900–14910PubMedCrossRefGoogle Scholar
  28. Rapraeger AC, Epel D (1981) The appearance of an extracellular arylsulfatase during morphogenesis of the sea urchin Strongylocentrotus purpuratus. Dev Biol 88:269–278PubMedCrossRefGoogle Scholar
  29. Rast JP (2000) Transgenic manipulation of the sea urchin embryo. Methods Mol Biol 136:365–373PubMedGoogle Scholar
  30. Roeser D, Preusser-Kunze A, Schmidt B, Gasow K, Wittmann JG, Dierks T, von Figura K, Rudolph MG (2006) A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme. Proc Natl Acad Sci USA 103:81–86PubMedCrossRefGoogle Scholar
  31. Sasaki H, Yamada K, Akasaka K, Kawasaki H, Suzuki K, Saito A, Sato M, Shimada H (1988) cDNA cloning, nucleotide sequence and expression of the gene for arylsulfatase in the sea urchin (Hemicentrotus pulcherrimus) embryo. Eur J Biochem 177:9–13PubMedCrossRefGoogle Scholar
  32. Schmidt B, Selmer T, Ingendoh A, von Figura K (1995) A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency. Cell 82:271–278PubMedCrossRefGoogle Scholar
  33. Tang R, Rosen SD (2009) Functional consequences of the subdomain organization of the sulfs. J Biol Chem 284:21505–21514PubMedCrossRefGoogle Scholar
  34. Uchimura K, Morimoto-Tomita M, Bistrup A, Li J, Lyon M, Gallagher J, Werb Z, Rosen SD (2006) HSulf-2, an extracellular endoglucosamine-6-sulfatase, selectively mobilizes heparin-bound growth factors and chemokines: effects on VEGF, FGF-1, and SDF-1. BMC Biochem 7:2PubMedCrossRefGoogle Scholar
  35. van der Pal RH, Klein W, van Golde LM, Lopes-Cardozo M (1991) Developmental profiles of arylsulfatases A and B in rat cerebral cortex and spinal cord. Biochim Biophys Acta 1081:315–320PubMedGoogle Scholar
  36. Viviano BL, Paine-Saunders S, Gasiunas N, Gallagher J, Saunders S (2004) Domain-specific modification of heparan sulfate by Qsulf1 modulates the binding of the bone morphogenetic protein antagonist Noggin. J Biol Chem 279:5604–5611PubMedCrossRefGoogle Scholar
  37. Yang Q, Angerer LM, Angerer RC (1989) Structure and tissue-specific developmental expression of a sea urchin arylsulfatase gene. Dev Biol 135:53–65PubMedCrossRefGoogle Scholar
  38. Zito E, Fraldi A, Pepe S, Annunziata I, Kobinger G, Di Natale P, Ballabio A, Cosma MP (2005) Sulphatase activities are regulated by the interaction of sulphatase-modifying factor 1 with SUMF2. EMBO Rep 6:655–660PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tetsushi Sakuma
    • 1
  • Kazuya Ohnishi
    • 1
  • Kazumasa Fujita
    • 1
  • Hiroshi Ochiai
    • 1
  • Naoaki Sakamoto
    • 1
  • Takashi Yamamoto
    • 1
  1. 1.Department of Mathematical and Life Sciences, Graduate School of ScienceHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations