Development Genes and Evolution

, Volume 221, Issue 1, pp 29–41

Characterization of Cer-1 cis-regulatory region during early Xenopus development

  • Ana Cristina Silva
  • Mário Filipe
  • Herbert Steinbeisser
  • José António Belo
Original Article

Abstract

Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position −172 to −168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.

Keywords

Anterior dorsal mesendoderm Anterior visceral endoderm Transient transgenesis Mouse Xenopus 

Abbreviations

AVE

Anterior visceral endoderm

ADME

Anterior dorsal mesendoderm

dkk-1

dickkopf-1

Xcer

Xenopus Cerberus

mcer-1

Mouse cerberus-like

IDME

Involuting mesendoderm

ECR

Evolutionary conserved sequence

References

  1. Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127:1173–1183PubMedGoogle Scholar
  2. Ahmed N, Howard L, Woodland HR (2004) Early endodermal expression of the Xenopus endodermin gene is driven by regulatory sequences containing essential Sox protein-binding elements. Differentiation 72:171–184PubMedCrossRefGoogle Scholar
  3. Barnes JD, Crosby JL, Jones CM, Wright CV, Hogan BL (1994) Embryonic expression of Lim-1, the mouse homolog of Xenopus Xlim-1, suggests a role in lateral mesoderm differentiation and neurogenesis. Dev Biol 161:168–178PubMedCrossRefGoogle Scholar
  4. Bauer DV, Huang S, Moody SA (1994) The cleavage stage origin of Spemann’s organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120:1179–1189PubMedGoogle Scholar
  5. Bell E, Munoz-Sanjuan I, Altmann CR, Vonica A, Brivanlou AH (2003) Cell fate specification and competence by Coco, a maternal BMP, TGFbeta and Wnt inhibitor. Development 130:1381–1389PubMedCrossRefGoogle Scholar
  6. Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M, Follettie M, De Robertis EM (1997) Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech Dev 68:45–57PubMedCrossRefGoogle Scholar
  7. Belo JA, Leyns L, Yamada G, De Robertis EM (1998) The prechordal midline of the chondrocranium is defective in Goosecoid-1 mouse mutants. Mech Dev 72:15–25PubMedCrossRefGoogle Scholar
  8. Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, De Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26:265–270PubMedCrossRefGoogle Scholar
  9. Belo JA, Silva AC, Borges AC, Filipe M, Bento M, Gonçalves L, Vitorino M, Salgueiro AM, Teixeira V, Tavares AT, Marques S (2009) Generating asymmetries in the early vertebrate embryo: the role of the Cerberus-like family. Int J Dev Biol 53:1399–1407PubMedCrossRefGoogle Scholar
  10. Biben C, Stanley E, Fabri L, Kotecha S, Rhinn M, Drinkwater C, Lah M, Wang CC, Nash A, Hilton D et al (1998) Murine cerberus homologue mCer-1: a candidate anterior patterning molecule. Dev Biol 194:135–151PubMedCrossRefGoogle Scholar
  11. Blum M, Gaunt SJ, Cho KW, Steinbeisser H, Blumberg B, Bittner D, De Robertis EM (1992) Gastrulation in the mouse: the role of the homeobox gene goosecoid. Cell 69:1097–1106PubMedCrossRefGoogle Scholar
  12. Borges AC, Marques S, Belo JA (2002) Goosecoid and cerberus-like do not interact during mouse embryogenesis. Int J Dev Biol 46:259–262PubMedGoogle Scholar
  13. Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601PubMedCrossRefGoogle Scholar
  14. Brannon M, Gomperts M, Sumoy L, Moon RT, Kimelman D (1997) A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev 11:2359–2370PubMedCrossRefGoogle Scholar
  15. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ (2001) Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:965–969PubMedCrossRefGoogle Scholar
  16. Brickman JM, Jones CM, Clements M, Smith JC, Beddington RS (2000) Hex is a transcriptional repressor that contributes to anterior identity and suppresses Spemann organiser function. Development 127:2303–2315PubMedGoogle Scholar
  17. Chen X, Weisberg E, Fridmacher V, Watanabe M, Naco G, Whitman M (1997) Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389:85–89PubMedCrossRefGoogle Scholar
  18. Cho KW, Blumberg B, Steinbeisser H, De Robertis EM (1991) Molecular nature of Spemann’s organizer: the role of the Xenopus homeobox gene goosecoid. Cell 67:1111–1120PubMedCrossRefGoogle Scholar
  19. Clements D, Cameleyre I, Woodland HR (2003) Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development. Mech Dev 120:337–348PubMedCrossRefGoogle Scholar
  20. De Robertis EM, Blum M, Niehrs C, Steinbeisser H (1992) Goosecoid and the organizer. Dev Suppl 116:167–171Google Scholar
  21. Dufort D, Schwartz L, Harpal K, Rossant J (1998) The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125:3015–3025PubMedGoogle Scholar
  22. Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362PubMedCrossRefGoogle Scholar
  23. Hanes SD, Brent R (1989) DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57:1275–1283PubMedCrossRefGoogle Scholar
  24. Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, Hibi M, Suzuki T (2004) The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left–right patterning in zebrafish. Development 131:1741–1753PubMedCrossRefGoogle Scholar
  25. Hen R, Borrelli E, Sassone-Corsi P, Chambon P (1983) An enhancer element is located 340 base pairs upstream from the adenovirus-2 E1A capsite. Nucleic Acids Res 11:8747–8760Google Scholar
  26. Hudson C, Clements D, Friday RV, Stott D, Woodland HR (1997) Xsox17alpha and -beta mediate endoderm formation in Xenopus. Cell 91:397–4051PubMedCrossRefGoogle Scholar
  27. Ishimura A, Maeda R, Takeda M, Kikkawa M, Daar IO, Maeno M (2000) Involvement of BMP-4/msx-1 and FGF pathways in neural induction in the Xenopus embryo. Dev Growth Differ 42:307–316PubMedCrossRefGoogle Scholar
  28. Jones CM, Broadbent J, Thomas PQ, Smith JC, Beddington RS (1999) An anterior signalling centre in Xenopus revealed by the homeobox gene XHex. Curr Biol 9:946–954PubMedCrossRefGoogle Scholar
  29. Katoh M, Katoh M (2006) CER-1 is a common target of WNT and NODAL signaling pathways in human embryonic stem cells. Int J Mol Med 17:795–799PubMedGoogle Scholar
  30. Kimura C, Shen MM, Takeda N, Aizawa S, Matsuo I (2001) Complementary functions of Otx2 and Cripto in initial patterning of mouse epiblast. Dev Biol 235:12–32PubMedCrossRefGoogle Scholar
  31. Laurent MN, Blitz IL, Hashimoto C, Rothbacher U, Cho KW (1997) The Xenopus homeobox gene twin mediates Wnt induction of goosecoid in establishment of Spemann’s organizer. Development 124:4905–4916PubMedGoogle Scholar
  32. Lerchner W, Latinkic BV, Remacle JE, Huylebroeck D, Smith JC (2000) Region-specific activation of the Xenopus brachyury promoter involves active repression in ectoderm and endoderm: a study using transgenic frog embryos. Development 127:2729–2739PubMedGoogle Scholar
  33. Liguori GL, Borges AC, D’Andrea D, Liguoro A, Gonçalves L, Salgueiro AM, Pérsico MG, Belo JA (2008) Cripto independent nodal signalling promotes positioning of the A–P axis in the early mouse embryo. Dev Biol 315:280–289PubMedCrossRefGoogle Scholar
  34. Maeda R, Kobayashi A, Sekine R, Lin JJ, Kung H, Maeno M (1997) Xmsx-1 modifies mesodermal tissue pattern along dorsoventral axis in Xenopus laevis embryo. Development 124:2553–2560PubMedGoogle Scholar
  35. Marques S, Borges AC, Silva AC, Freitas S, Cordenonsi M, Belo JA (2004) The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev 18:2342–2347PubMedCrossRefGoogle Scholar
  36. McKendry R, Hsu SC, Harland RM, Grosschedl R (1997) LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev Biol 192:420–431PubMedCrossRefGoogle Scholar
  37. Mesnard D, Filipe M, Belo JA, Zernicka-Goetz M (2004) The anterior–posterior axis emerges respecting the morphology of the mouse embryo that changes and aligns with the uterus before gastrulation. Curr Biol 14:184–196PubMedGoogle Scholar
  38. Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y (1998) Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction. Development 125:579–587PubMedGoogle Scholar
  39. Mochizuki T, Karavanov AA, Curtiss PE, Ault KT, Sugimoto N, Watabe T, Shiokawa K, Jamrich M, Cho KW, Dawid IB et al (2000) Xlim-1 and LIM domain binding protein 1 cooperate with various transcription factors in the regulation of the goosecoid promoter. Dev Biol 224:470–485PubMedCrossRefGoogle Scholar
  40. Moody SA (1987a) Fates of the blastomeres of the 16-cell stage Xenopus embryo. Dev Biol 119:560–578PubMedCrossRefGoogle Scholar
  41. Moody SA (1987b) Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Dev Biol 122:300–319PubMedCrossRefGoogle Scholar
  42. Newman CS, Chia F, Krieg PA (1997) The XHex homeobox gene is expressed during development of the vascular endothelium: overexpression leads to an increase in vascular endothelial cell number. Mech Dev 66:83–93PubMedCrossRefGoogle Scholar
  43. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis (Daudin). North Holland, AmsterdamGoogle Scholar
  44. Osada SI, Wright CV (1999) Xenopus nodal-related signaling is essential for mesendodermal patterning during early embryogenesis. Development 126:3229–3240PubMedGoogle Scholar
  45. Osada SI, Saijoh Y, Frisch A, Yeo CY, Adachi H, Watanabe M, Whitman M, Hamada H, Wright CV (2000) Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127:2503–2514PubMedGoogle Scholar
  46. Pannese M, Polo C, Andreazzoli M, Vignali R, Kablar B, Barsacchi G, Boncinelli E (1995) The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions. Development 121:707–720PubMedGoogle Scholar
  47. Penzel R, Oschwald R, Chen Y, Tacke L, Grunz H (1997) Characterization and early embryonic expression of a neural specific transcription factor xSOX3 in Xenopus laevis. Int J Dev Biol 41:667–677PubMedGoogle Scholar
  48. Perea-Gomez A, Shawlot W, Sasaki H, Behringer RR, Ang S (1999) HNF3beta and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior–posterior polarity in the mouse embryo. Development 126:4499–4511PubMedGoogle Scholar
  49. Perea-Gomez A, Rhinn M, Ang SL (2001) Role of the anterior visceral endoderm in restricting posterior signals in the mouse embryo. Int J Dev Biol 45:311–320PubMedGoogle Scholar
  50. Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397:707–710PubMedCrossRefGoogle Scholar
  51. Rebbert ML, Dawid IB (1997) Transcriptional regulation of the Xlim-1 gene by activin is mediated by an element in intron I. Proc Natl Acad Sci U S A 94:9717–9722PubMedCrossRefGoogle Scholar
  52. Rivera-Perez JA, Mallo M, Gendron-Maguire M, Gridley T, Behringer RR (1995) Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development 121:3005–3012PubMedGoogle Scholar
  53. Rodriguez Esteban C, Capdevila J, Economides AN, Pascual J, Ortiz A, Izpisua Belmonte JC (1999) The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature 401:243–251PubMedCrossRefGoogle Scholar
  54. Ruiz i Altaba A, Prezioso VR, Darnell JE, Jessell TM (1993) Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate. Mech Dev 44:91–108PubMedCrossRefGoogle Scholar
  55. Saltzman AG, Weinmann R (1989) Promoter specificity and modulation of RNA polymerase II transcription. FASEB J 3:1723–1733PubMedGoogle Scholar
  56. Sasai Y (2001) Roles of Sox factors in neural determination: conserved signaling in evolution? Int J Dev Biol 45:321–326PubMedGoogle Scholar
  57. Sekido R, Murai K, Kamachi Y, Kondoh H (1997) Two mechanisms in the action of repressor deltaEF1: binding site competition with an activator and active repression. Genes Cells 2:771–783PubMedCrossRefGoogle Scholar
  58. Shawlot W, Deng JM, Behringer RR (1998) Expression of the mouse cerberus-related gene, Cerr1, suggests a role in anterior neural induction and somitogenesis. Proc Natl Acad Sci U S A 95:6198–6203PubMedCrossRefGoogle Scholar
  59. Silva AC, Filipe M, Kuerner KM, Steinbeisser H, Belo JA (2003) Endogenous Cerberus activity is required for anterior head specification in Xenopus. Development 130:4943–4953PubMedCrossRefGoogle Scholar
  60. Simeone A, Acampora D, Gulisano M, Stornaiuolo A, Boncinelli E (1992) Nested expression domains of four homeobox genes in developing rostral brain. Nature 358:687–690PubMedCrossRefGoogle Scholar
  61. Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D’Apice MR, Nigro V, Boncinelli E (1993) A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 12:2735–2747PubMedGoogle Scholar
  62. Steinbeisser H, De Robertis EM (1993) Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity. C R Acad Sci III 316:959–971PubMedGoogle Scholar
  63. Taira M, Jamrich M, Good PJ, Dawid IB (1992) The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev 6:356–366PubMedCrossRefGoogle Scholar
  64. Tavares AT, Andrade S, Silva AC, Belo JA (2007) Cerberus is a feedback inhibitor of Nodal asymmetric signaling in the chick embryo. Development 134:2051–2060PubMedCrossRefGoogle Scholar
  65. Thomas P, Beddington R (1996) Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr Biol 6:1487–1496PubMedCrossRefGoogle Scholar
  66. Thomas PQ, Brown A, Beddington RS (1998) Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:85–94PubMedGoogle Scholar
  67. Trindade M, Tada M, Smith JC (1999) DNA-binding specificity and embryological function of Xom (Xvent-2). Dev Biol 216:442–456PubMedCrossRefGoogle Scholar
  68. van Grunsven LA, Papin C, Avalosse B, Opdecamp K, Huylebroeck D, Smith JC, Bellefroid EJ (2000) XSIP1, a Xenopus zinc finger/homeodomain encoding gene highly expressed during early neural development. Mech Dev 94:189–193PubMedCrossRefGoogle Scholar
  69. Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, Nelles L, Wuytens G, Su MT, Bodmer R et al (1999) SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J Biol Chem 274:20489–20498PubMedCrossRefGoogle Scholar
  70. Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL, Robertson EJ (1998) Smad2 signaling in extraembryonic tissues determines anterior–posterior polarity of the early mouse embryo. Cell 92:797–808PubMedCrossRefGoogle Scholar
  71. Wilson D, Sheng G, Lecuit T, Dostatni N, Desplan C (1993) Cooperative dimerization of paired class homeo domains on DNA. Genes Dev 7:2120–2134PubMedCrossRefGoogle Scholar
  72. Yamada G, Mansouri A, Torres M, Stuart ET, Blum M, Schultz M, De Robertis EM, Gruss P (1995) Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development 121:2917–2922PubMedGoogle Scholar
  73. Yamamoto TS, Takagi C, Hyodo AC, Ueno N (2001) Suppression of head formation by Xmsx-1 through the inhibition of intracellular nodal signaling. Development 128:2769–2779PubMedGoogle Scholar
  74. Yamamoto S, Hikasa H, Ono H, Taira M (2003) Molecular link in the sequential induction of the Spemann organizer: direct activation of the cerberus gene by Xlim-1, Xotx2, Mix.1, and Siamois, immediately downstream from Nodal and Wnt signaling. Dev Biol 257:190–204PubMedCrossRefGoogle Scholar
  75. Yang YP, Klingensmith J (2006) Roles of organizer factors and BMP antagonism in mammalian forebrain establishment. Dev Biol 296:458–475PubMedCrossRefGoogle Scholar
  76. Yokouchi Y, Vogan KJ, Pearse RV 2nd, Tabin CJ (1999) Antagonistic signaling by Caronte, a novel Cerberus-related gene, establishes left-right asymmetric gene expression. Cell 98:573–583PubMedCrossRefGoogle Scholar
  77. Zhu L, Marvin MJ, Gardiner A, Lassar AB, Mercola M, Stern CD, Levin M (1999) Cerberus regulates left–right asymmetry of the embryonic head and heart. Curr Biol 9:931–938PubMedCrossRefGoogle Scholar
  78. Zorn AM, Butler K, Gurdon JB (1999) Anterior endomesoderm specification in Xenopus by Wnt/beta-catenin and TGF-beta signalling pathways. Dev Biol 209:282–297PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Ana Cristina Silva
    • 2
    • 3
  • Mário Filipe
    • 3
  • Herbert Steinbeisser
    • 4
  • José António Belo
    • 1
    • 2
    • 3
    • 5
  1. 1.Regenerative Medicine Program, Departamento de Ciências Biomédicas e MedicinaUniversidade do AlgarveFaroPortugal
  2. 2.IBB-Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e EstruturalUniversidade do AlgarveFaroPortugal
  3. 3.Instituto Gulbenkian de CiênciaOeirasPortugal
  4. 4.Institute of Human GeneticsUniversity of HeidelbergHeidelbergGermany
  5. 5.IBB-Institute for Biotechnology and Bioengineering, Dep. Ciências Biomédicas e Medicina, Edf. 8, Campus de GambelasUniversidade do AlgarveFaroPortugal

Personalised recommendations