Development Genes and Evolution

, Volume 220, Issue 5–6, pp 161–172 | Cite as

Expression of Hox genes during the larval development of the snail, Gibbula varia (L.)—further evidence of non-colinearity in molluscs

Original Article

Abstract

Hox transcription factors, a subfamily of homeobox genes, are expressed in distinct, often overlapping domains along the anterior–posterior body axis of animal embryos. Here, we report the sequence and expression pattern of Hox2, Hox3, Hox4, Hox5, Lox5, Hox7, Lox4, and Lox2 in different larval stages during the encapsulated development of the marine gastropod Gibbula varia. Our results show that all Gva-Hox genes are expressed in ectoderm-derived cells. Hox2, Hox3, Hox4, Hox5, and Hox7 are expressed in overlapping patterns in the pedal, pleural, oesophageal, and visceral ganglia, supporting the ancestral role of Hox genes in the neurogenesis processes in bilaterians. Gva-Hox1, Gva-Post2, and Gva-Post1 genes are involved in shell morphogenesis and have apparently lost their role in neurogangliogenesis. Lox5, Lox4, and Lox2 are expressed in different cells of the apical organ during the earlier larval stage (trochophore) and the cerebral ganglia during later larval stages (veliger). These results support the hypothesis that apical organ neurosensory cells contribute to the formation of cerebral ganglia commissures during metamorphosis. Gva-Hox7 and Gva-Lox4 are additionally expressed in the prototroch of the trochophore and in the velar area of the veliger larvae. This contradicts with the expression of these genes in the annelids, where most of Hox genes are expressed in the posttrochal area and are involved in segmental determination. Therefore, expression of Hox genes may serve as an example of co-option and plasticity of gene function during evolution of gastropods.

Keywords

Gastropod Hox genes Trochophore larva Veliger larva Neurogangliogenesis 

Supplementary material

427_2010_338_MOESM1_ESM.pdf (448 kb)
ESM 1(PDF 447 kb)

References

  1. Aisemberg GO, Macagno ER (1994) Lox1, an Antennapedia-class homeobox gene, is expressed during leech gangliogenesis in both transient and stable central neurons. Dev Biol 161:455–465CrossRefPubMedGoogle Scholar
  2. Aisemberg GO, Wysocka-Diller J, Wong VY, Macagno ER (1993) Antennapedia-class homebox genes define diverse neuronal sets in the embryonic CNS of the leech. J Neurobiol 24:1423–1432CrossRefPubMedGoogle Scholar
  3. Aronowitcz J, Lowe CJ (2006) Hox gene expression in the hemichordate Saccoglossus kowalevskii and the evolution of deuterostome nervous system. Integ Comp Biol 46(6):890–901CrossRefGoogle Scholar
  4. Balavoine G, de Rosa R, Adoutte A (2002) Hox clusters and bilaterian phylogeny. Mol Phylogenet Evol 24:366–373CrossRefPubMedGoogle Scholar
  5. Barlow LA, Trueman JW (1992) Patterns of serotonin and SPC immunoreactivity during metamophosis of the nervous system of the red abalone, Haliotis rufescens. J Neurobiol 23:829–844CrossRefPubMedGoogle Scholar
  6. Barucca M, Olmo E, Canapa A (2003) Hox and paraHox genes in bivalve molluscs. Gene 317:97–102CrossRefPubMedGoogle Scholar
  7. Biscotti MA, Canapa A, Olmo E, Barucca M (2007) Hox genes in the antarctic polyplacophoran Nuttallochiton mirandus. J Experiment Zool (Mol Dev Evol) 308B:507–513CrossRefGoogle Scholar
  8. Brusca RC, Brusca GJ (2002) Phylum Mollusca. In: Invertebrates, 2nd edn. Sinauer, Sunderland, pp 701–769Google Scholar
  9. Callaerts P, Lee PN, Hartmann B, Farfan C, Choy DWY, Ikeo K, Fischbach K, Gehring WJ, de Couet HG (2002) Hox genes in the sepiolid squid Euprymna scolopes: implications for the evolution of complex body plans. Proc Natl Acad Sci USA 99(4):2088–2093CrossRefPubMedGoogle Scholar
  10. Canapa A, Biscotti MA, Olmo E, Barucca M (2005) Isolation of Hox and ParaHox genes in the bivalve Pecten maximus. Gene 348:83–88CrossRefPubMedGoogle Scholar
  11. de Rosa R, Grenier JK, Andreeva T, Cook CE, Adoutte A, Akam M, Carroll SB, Guillaume Balavoine G (1999) Hox genes in brachiopods and priapulids and protostome evolution. Nature 399:772–776CrossRefPubMedGoogle Scholar
  12. Dickinson AJG, Croll RP (2003) Development of the larval nervous system of the gastropod Ilyanassa obsoleta. J Comp Neurol 466:197–218CrossRefPubMedGoogle Scholar
  13. Duboule D (1994) Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl 135–142Google Scholar
  14. Duboule D, Dollé P (1989) The structural and functional organization of the murine HOX gene family resembles that of Drosophila homeotic genes. EMBO J 8(5):1497–1505PubMedGoogle Scholar
  15. Ferrier DE, Minguillon C (2003) Evolution of the Hox/ParaHox gene clusters. Int J Dev Biol 47(7–8):605–611PubMedGoogle Scholar
  16. Fröbius AC, Matus DQ, Seaver EC (2008) Genomic organization and expression demonstrate spatial and temporal Hox gene colinearity in the Lophotrochozoan Capitella sp. I. PLoS ONE 3(12):e4004. doi:10.1371/journal.pone.0004004 CrossRefPubMedGoogle Scholar
  17. Garcia-Fernàndez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881–892CrossRefPubMedGoogle Scholar
  18. Gifondorwa DJ, Leise EM (2006) Programmed cell death in the apical ganglion during larval metamorphosis of the marine mollusc Ilyanassa obsoleta. Biol Bull 210:109–120CrossRefPubMedGoogle Scholar
  19. Gionti M, Ristoratore F, Di Gregorio A, Aniello F, Branno M, Di Lauro R (1998) Cihox5, a new Ciona intestinalis Hox-related gene, is involved in regionalization of the spinal cord. Dev Genes Evol 207(8):515–523CrossRefPubMedGoogle Scholar
  20. Giusti AF, Hinman VF, Degnan SM, Degnan BM, Morse DE (2000) Expression of a Scr/Hox5 gene in the larval central nervous system of the gastropod Haliotis, a non-segmented spiralian lophotrochozoan. Evol Dev 2:294–302CrossRefPubMedGoogle Scholar
  21. Graham A, Papalopulu N, Krumlauf R (1989) The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367–378CrossRefPubMedGoogle Scholar
  22. Hadfield MG, Meleshkevitch EA, Boudko DY (2000) The apical sensory organ of a gastropod veliger is a receptor for settlement cues. Biol Bull 198:67–76CrossRefPubMedGoogle Scholar
  23. Hejnol A, Martindale MQ (2009) Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biol 7:65CrossRefPubMedGoogle Scholar
  24. Hinman VF, O’Brien EK, Richards GS, Degnan BM (2003) Expression of anterior Hox genes during larval development of the gastropod Haliotis asinina. Evol Dev 5:508–521CrossRefPubMedGoogle Scholar
  25. Holland PW (2001) Beyond the Hox: how widespread is homeobox gene clustering? J Anatomy 199:13–24CrossRefGoogle Scholar
  26. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  27. Iijima M, Akiba N, Sarashina I, Kuratani S, Endo K (2006) Evolution of Hox genes in molluscs: a comparison among seven morphologically diverse classes. J Molluscan Stud 72:259–266CrossRefGoogle Scholar
  28. In der Rieden PM, Mainguy G, Woltering JM, Durston AJ (2004) Homeodomain to hexapeptide or PBC-interaction-domain distance: size apparently matters. Trends Genet 20:76–79CrossRefPubMedGoogle Scholar
  29. Irvine SQ, Martindale MQ (2000) Expression patterns of anterior Hox genes in the polychaete Chaetopterus: correlation with morphological boundaries. Dev Biol 217:333–351CrossRefPubMedGoogle Scholar
  30. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  31. Keys DN, Lee BI, Di Gregorio A, Harafuji N, Detter JC, Wang M, Kahsai O, Ahn S, Zhang C, Doyle SA, Satoh N, Satou Y, Saiga H, Christian AT, Kourakis MJ, Master VA, Lokhorst DK, Nardelli-Haefliger D, Wedeen CJ, Martindale MQ, Shankland M (1997) Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 190:284–300CrossRefGoogle Scholar
  32. Kourakis MJ, Master VA, Lokhorst DK, Nardelli-Haefliger D, Wedeen CJ, Martindale MQ, Shankland M (1997) Conserved anterior boundaries of Hox gene expression in the central nervous system of the leech Helobdella. Dev Biol 190:284–300CrossRefPubMedGoogle Scholar
  33. Kulakova M, Bakalenko N, Novikova E, Cook CE, Eliseeva E, Steinmetz PR, Kostyuchenko RP, Dondua A, Arendt D, Akam M, Andreeva T (2007) Hox gene expression in larval development of the polychaetes Nereis virens and Platynereis dumerilii (Annelida, Lophotrochozoa). Dev Genes Evol 217(1):39–54CrossRefPubMedGoogle Scholar
  34. Le Gouar M, Guillou A, Vervoort A (2004) Expression of a SoxB and a Wnt2/13 gene during the development of the mollusc Patella vulgata. Dev Genes Evol 214:250–256CrossRefPubMedGoogle Scholar
  35. Lee PN, Callaerts P, de Couet HG, Martindale MQ (2003) Cephalopod Hox genes and the origin of morphological novelties. Nature 424:1061–1065CrossRefPubMedGoogle Scholar
  36. Lespinet O, Nederbragt AJ, Cassan M, Dictus WJAG, van Loon AE, Adoutte A (2002) Characterization of two snail genes in the gastropod mollusc Patella vulgata: implications for understanding the ancestral function of the snail-related genes in Bilateria. Dev Genes Evol 212:186–195CrossRefPubMedGoogle Scholar
  37. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276(5688):565–570CrossRefPubMedGoogle Scholar
  38. Marois R, Carew TJ (1997a) Fine structure of the apical ganglion and its serotonergic cells in the larva of Aplysia californica. Biol Bull 192:388–398CrossRefPubMedGoogle Scholar
  39. Marois R, Carew TJ (1997b) Ontogeny of serotonergic neurons in Aplysia californica. J Comp Neurol 386:477–490CrossRefPubMedGoogle Scholar
  40. Marois R, Carew TJ (1997c) Projection patterns and target tissues of the serotonergic cells in larval Aplysia californica. J Comp Neurol 386:491–506CrossRefPubMedGoogle Scholar
  41. Merabet S, Hudry B, Saadaoui M, Graba Y (2009) Classification of sequence signatures: a guide to Hox protein function. BioEssays 31:500–511CrossRefPubMedGoogle Scholar
  42. Moreno E, Nadal M, Baguñé J, Martínez P (2009) Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis. Evol Dev 11(5):574–581CrossRefPubMedGoogle Scholar
  43. Murtha MT, Leckman JF, Ruddle FH (1991) Detection of homeobox genes in development and evolution. Proc Natl Acad Sci USA 88:10711–10715CrossRefPubMedGoogle Scholar
  44. Nardelli-Haefliger D, Bruce AEE, Shankland M (1994) An axial domain of HOM/Hox gene expression is formed by morphogenetic alignment of independently specified cell lineages in the leech Helobdella. Development 120:1839–1849PubMedGoogle Scholar
  45. Nederbragt AJ, te Welscher P, van den Driesche S, van Loon AE, Dictus WJAG (2002) Novel and conserved roles for orthodenticle/otx and orthopedia/otp orthologs in the gastropod mollusc Patella vulgata. Dev Genes Evol 212:330–337CrossRefPubMedGoogle Scholar
  46. Page LR, Parries SC (2000) Comparative study of the apical ganglion in planktotrophic caenogastropod larvae: ultrastructure and immunoreactivity to serotonin. J Comp Neurol 418:383–401CrossRefPubMedGoogle Scholar
  47. Papillon D, Perez Y, Fasano L, Le Parco Y, Caubit X (2005) Restricted expression of a median Hox gene in the central nervous system of chaetognaths. Dev Genes Evol 215:369–373CrossRefPubMedGoogle Scholar
  48. Passamaneck YJ, Halanych KM (2004) Evidence from Hox genes that bryozoans are lophotrochozoans. Evol Dev 4:275–281CrossRefGoogle Scholar
  49. Pendleton JW, Nagai BK, Murtha MT, Ruddle FH (1993) Expansion of the Hox gene family and the evolution of chordates. PNAS 90(13):6300–6304CrossRefPubMedGoogle Scholar
  50. Pérez-Parallé ML, Carpintero P, Pazos A, Abad M, Sánchez J (2005) The HOX gene cluster in the bivalve mollusc Mytilus galloprovincialis. Biochem Genet 43(7/8):417–424CrossRefPubMedGoogle Scholar
  51. Pernice M, Deutsch JS, Andouche A, Boucher-Rodoni R, Bonnaud L (2006) Unexpected variation of Hox genes’ Homeodomains in Cephalopods. Mol Phylogenet Evol 40(3):872–879CrossRefPubMedGoogle Scholar
  52. Raven CP (1966) Morphogenesis: the analysis of Molluscan development, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  53. Rokhsar DS, Hawkins TL, Levine M, Richardson PM (2005) A saturation screen for cis-acting regulatory DNA in the Hox genes of Ciona intestinalis. Proc Natl Acad Sci USA 102(3):679–683CrossRefPubMedGoogle Scholar
  54. Ruthensteiner B, Schaefer K (2002) The cephalic sensory organ in veliger larvae of pulmonates (Gastropoda: Mollusca). J Morphol 251:93–102CrossRefPubMedGoogle Scholar
  55. Samadi L, Steiner G (2009) Involvement of Hox genes in shell morphogenesis in the encapsulated development of a top shell gastropod (Gibbula varia L.). Dev Genes Evol 219:523–530CrossRefPubMedGoogle Scholar
  56. Samadi L, Steiner G (2010) Conservation of ParaHox genes’ function in patterning of the digestive tract of the marine gastropod Gibbula varia. BMC Dev Biol 10:74. doi:10.1186/1471-213X-10-74 CrossRefPubMedGoogle Scholar
  57. Schramm G, Bruchhaus I, Roeder T (2000) A simple and reliable 5´-RACE approach. Nucleic Acids Res 28(22):96–99CrossRefGoogle Scholar
  58. Seo HC, Edvardsen RB, Maeland AD, Bjordal M, Jensen MF, Hansen A, Flaat M, Weissenbach J, Lehrach H, Wincker P, Reinhardt R, Chourrout D (2004) Hox cluster disintegration with persistent anteroposterior order of expression in Oikopleura dioica. Natur 431(7004):67–71CrossRefGoogle Scholar
  59. Wada H, Garcia-Fernandez J, Holland PW (1999) Colinear and segmental expression of amphioxus Hox genes. Dev Biol 213(1):131–141CrossRefPubMedGoogle Scholar
  60. Wong VY, Aisemberg GO, Gan WB, Macagno ER (1995) The leech homeobox gene Lox4 may determine segmental differentiation of identified neurons. J Neurosci 15:5551–5559PubMedGoogle Scholar
  61. Wysocka-Diller JW, Aisemberg GO, Baumgarten M, Levine M, Macagno ER (1989) Characterization of a homologue of bithorax-complex genes in the leech Hirudo medicinalis. Nature 341:760–763CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Molecular Phylogenetics, Department of Evolutionary Biology, Faculty of Life SciencesUniversity of ViennaViennaAustria

Personalised recommendations