Development Genes and Evolution

, Volume 220, Issue 1–2, pp 41–52 | Cite as

Bioinformatic analysis of P granule-related proteins: insights into germ granule evolution in nematodes

  • Luis A. Bezares-Calderón
  • Arturo Becerra
  • Laura S. Salinas
  • Ernesto Maldonado
  • Rosa E. Navarro
Original Article


Germ cells in many animals possess a specialized cytoplasm in the form of granules that contain RNA and protein complexes essential for the function and preservation of the germline. The mechanism for the formation of these granules is still poorly understood; however, the lack of conservation in their components across different species suggests evolutionary convergence in the assembly process. Germ granules are assumed to be present in all nematodes with a preformed germline. However, few studies have clearly identified these structures in species other than Caenorhabditis elegans and even less have carried functional analysis to provide a broader panorama of the granules composition in the phylum. We adopted a bioinformatics approach to investigate the extension of conservation in nematodes of some known C. elegans germ granule components, as a proxy to understand germ granules evolution in this phylum. Unexpectedly, we found that, in nematodes, the DEAD box RNA helicase Vasa, a conserved protein among different phyla, shows a complex history of clade-specific duplications and sequence divergence. Our analyses suggest that, in nematodes, Vasa’s function might be shared among proteins like LAF-1, VBH-1, and GLH-1/-2/-3 and GLH-4. Key components of P granules assembly in C. elegans, like the PGL protein family, are only preserved in Caenorhabditis species. Our analysis suggests that germ granules assembly may not be conserved in nematodes. Studies on these species could bring insight into the basic components required for this pathway.


Nematodes’ evolution Germ granules RNA helicases C. elegans 



Research at R. E. Navarro and E. Maldonado laboratories is funded by grants from PAPIIT-UNAM (IN225509 and IN220406) and CONACYT (103856, 50894 and 100199). We would like to thank L. Martínez for providing us with computational support and technical assistance.

Supplementary material

427_2010_327_MOESM1_ESM.pdf (18.4 mb)
Table S1 WormBase protein sequence names of GenBank Gis used in phylogenetic analyses (PDF 18829 kb)
427_2010_327_MOESM2_ESM.pdf (5.5 mb)
Table S2 WormBase and predicted protein homologs discarded from phylogenetic analyses (PDF 5600 kb)
427_2010_327_MOESM3_ESM.pdf (8.3 mb)
Table S3 Protein predictions using AUGUSTUS or GENEMARK.HMM (PDF 8511 kb)


  1. Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, Perfus-Barbeoch L, Anthouard V, Artiguenave F, Blok VC, Caillaud MC, Coutinho PM, Dasilva C, De Luca F, Deau F, Esquibet M, Flutre T, Goldstone JV, Hamamouch N, Hewezi T, Jaillon O, Jubin C, Leonetti P, Magliano M, Maier TR, Markov GV, McVeigh P, Pesole G, Poulain J, Robinson-Rechavi M, Sallet E, Segurens B, Steinbach D, Tytgat T, Ugarte E, van Ghelder C, Veronico P, Baum TJ, Blaxter M, Bleve-Zacheo T, Davis EL, Ewbank JJ, Favery B, Grenier E, Henrissat B, Jones JT, Laudet V, Maule AG, Quesneville H, Rosso MN, Schiex T, Smant G, Weissenbach J, Wincker P (2008) Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915CrossRefPubMedGoogle Scholar
  2. Andersen CB, Ballut L, Johansen JS, Chamieh H, Nielsen KH, Oliveira CL, Pedersen JS, Seraphin B, Le Hir H, Andersen GR (2006) Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313:1968–1972CrossRefPubMedGoogle Scholar
  3. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150PubMedGoogle Scholar
  4. Chuang RY, Weaver PL, Liu Z, Chang TH (1997) Requirement of the DEAD-Box protein ded1p for messenger RNA translation. Science 275:1468–1471CrossRefPubMedGoogle Scholar
  5. Chuma S, Hosokawa M, Tanaka T, Nakatsuji N (2009) Ultrastructural characterization of spermatogenesis and its evolutionary conservation in the germline: germinal granules in mammals. Mol Cell Endocrinol 306:17–23CrossRefPubMedGoogle Scholar
  6. consortium TCes (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018CrossRefGoogle Scholar
  7. Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, Fulton L, Fulton R, Godfrey J, Minx P, Mitreva M, Roeseler W, Tian H, Witte H, Yang SP, Wilson RK, Sommer RJ (2008) The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet 40:1193–1198CrossRefPubMedGoogle Scholar
  8. Extavour CG, Akam M (2003) Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 130:5869–5884CrossRefPubMedGoogle Scholar
  9. Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CK, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li BW, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DM, McCarter JP, McReynolds L, Mitreva M, Nutman TB, Parkinson J, Peregrin-Alvarez JM, Poole C, Ren Q, Saunders L, Sluder AE, Smith K, Stanke M, Unnasch TR, Ware J, Wei AD, Weil G, Williams DJ, Zhang Y, Williams SA, Fraser-Liggett C, Slatko B, Blaxter ML, Scott AL (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317:1756–1760CrossRefPubMedGoogle Scholar
  10. Goldstein B, Frisse LM, Thomas WK (1998) Embryonic axis specification in nematodes: evolution of the first step in development. Curr Biol 8:157–160CrossRefPubMedGoogle Scholar
  11. Gruidl ME, Smith PA, Kuznicki KA, McCrone JS, Kirchner J, Roussell DL, Strome S, Bennett KL (1996) Multiple potential germ-line helicases are components of the germ-line-specific P granules of Caenorhabditis elegans. Proc Natl Acad Sci U S A 93:13837–13842CrossRefPubMedGoogle Scholar
  12. Hay B, Jan LY, Jan YN (1988) A protein component of Drosophila polar granules is encoded by vasa and has extensive sequence similarity to ATP-dependent helicases. Cell 55:577–587CrossRefPubMedGoogle Scholar
  13. Holterman M, van der Wurff A, van den Elsen S, van Megen H, Bongers T, Holovachov O, Bakker J, Helder J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown Clades. Mol Biol Evol 23:1792–1800CrossRefPubMedGoogle Scholar
  14. Hubert A, Anderson P (2009) The C. elegans sex determination gene laf-1 encodes a putative DEAD-box RNA helicase. Dev Biol 330:358–367CrossRefPubMedGoogle Scholar
  15. Johnstone O, Deuring R, Bock R, Linder P, Fuller MT, Lasko P (2005) Belle is a Drosophila DEAD-box protein required for viability and in the germ line. Dev Biol 277:92–101CrossRefPubMedGoogle Scholar
  16. Kawasaki I, Shim YH, Kirchner J, Kaminker J, Wood WB, Strome S (1998) PGL-1, a predicted RNA-binding component of germ granules, is essential for fertility in C. elegans. Cell 94:635–645CrossRefPubMedGoogle Scholar
  17. Kawasaki I, Amiri A, Fan Y, Meyer N, Dunkelbarger S, Motohashi T, Karashima T, Bossinger O, Strome S (2004) The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 167:645–661CrossRefPubMedGoogle Scholar
  18. Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R, Fitch DH, Felix MA (2007) Trends, stasis, and drift in the evolution of nematode vulva development. Curr Biol 17:1925–1937CrossRefPubMedGoogle Scholar
  19. Kuznicki KA, Smith PA, Leung-Chiu WM, Estevez AO, Scott HC, Bennett KL (2000) Combinatorial RNA interference indicates GLH-4 can compensate for GLH-1; these two P granule components are critical for fertility in C. elegans. Development 127:2907–2916PubMedGoogle Scholar
  20. Lasko PF, Ashburner M (1988) The product of the Drosophila gene vasa is very similar to eukaryotic initiation factor-4A. Nature 335:611–617CrossRefPubMedGoogle Scholar
  21. Leacock SW, Reinke V (2008) MEG-1 and MEG-2 are embryo-specific P-granule components required for germline development in Caenorhabditis elegans. Genetics 178:295–306CrossRefPubMedGoogle Scholar
  22. Liang L, Diehl-Jones W, Lasko P (1994) Localization of vasa protein to the Drosophila pole plasm is independent of its RNA-binding and helicase activities. Development 120:1201–1211PubMedGoogle Scholar
  23. Linder P (2006) Dead-box proteins: a family affair—active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168–4180CrossRefPubMedGoogle Scholar
  24. Mitreva M, Jasmer DP (2006) Biology and genome of Trichinella spiralis. WormBook. doi: 10.1895/wormbook.1.124.1,
  25. Mochizuki K, Nishimiya-Fujisawa C, Fujisawa T (2001) Universal occurrence of the vasa-related genes among metazoans and their germline expression in Hydra. Dev Genes Evol 211:299–308CrossRefPubMedGoogle Scholar
  26. Navarro RE, Blackwell TK (2005) Requirement for P granules and meiosis for accumulation of the germline RNA helicase CGH-1. Genesis 42:172–180CrossRefPubMedGoogle Scholar
  27. Navarro RE, Shim EY, Kohara Y, Singson A, Blackwell TK (2001) cgh-1, a conserved predicted RNA helicase required for gametogenesis and protection from physiological germline apoptosis in C. elegans. Development 128:3221–3232PubMedGoogle Scholar
  28. Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, Cromer J, Diener S, Gajan J, Graham S, Houfek TD, Liu Q, Mitros T, Schaff J, Schaffer R, Scholl E, Sosinski BR, Thomas VP, Windham E (2008) Sequence and genetic map of Meloidogyne hapla: a compact nematode genome for plant parasitism. Proc Natl Acad Sci U S A 105:14802–14807CrossRefPubMedGoogle Scholar
  29. Pitt JN, Schisa JA, Priess JR (2000) P granules in the germ cells of Caenorhabditis elegans adults are associated with clusters of nuclear pores and contain RNA. Dev Biol 219:315–333CrossRefPubMedGoogle Scholar
  30. Rajyaguru P, Parker R (2009) CGH-1 and the control of maternal mRNAs. Trends Cell Biol 19:24–28CrossRefPubMedGoogle Scholar
  31. Roussell DL, Bennett KL (1993) glh-1, a germ-line putative RNA helicase from Caenorhabditis, has four zinc fingers. Proc Natl Acad Sci U S A 90:9300–9304CrossRefPubMedGoogle Scholar
  32. Salinas LS, Maldonado E, Macias-Silva M, Blackwell TK, Navarro RE (2007) The DEAD box RNA helicase VBH-1 is required for germ cell function in C. elegans. Genesis 45:533–546CrossRefPubMedGoogle Scholar
  33. Schisa JA, Pitt JN, Priess JR (2001) Analysis of RNA associated with P granules in germ cells of C. elegans adults. Development 128:1287–1298PubMedGoogle Scholar
  34. Schupbach T, Wieschaus E (1989) Female sterile mutations on the second chromosome of Drosophila melanogaster. I. Maternal effect mutations. Genetics 121:101–117PubMedGoogle Scholar
  35. Seydoux G, Braun RE (2006) Pathway to totipotency: lessons from germ cells. Cell 127:891–904CrossRefPubMedGoogle Scholar
  36. Seydoux G, Fire A (1994) Soma-germline asymmetry in the distributions of embryonic RNAs in Caenorhabditis elegans. Development 120:2823–2834PubMedGoogle Scholar
  37. Skiba F, Schierenberg E (1992) Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. Dev Biol 151:597–610CrossRefPubMedGoogle Scholar
  38. Spike C, Meyer N, Racen E, Orsborn A, Kirchner J, Kuznicki K, Yee C, Bennett K, Strome S (2008a) Genetic analysis of the Caenorhabditis elegans GLH family of P-granule proteins. Genetics 178:1973–1987CrossRefPubMedGoogle Scholar
  39. Spike CA, Bader J, Reinke V, Strome S (2008b) DEPS-1 promotes P-granule assembly and RNA interference in C. elegans germ cells. Development 135:983–993CrossRefPubMedGoogle Scholar
  40. Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D'Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH (2003) The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol 1:E45CrossRefPubMedGoogle Scholar
  41. Strome S (2005) Specification of the germ line. WormBook. doi: 10.1895/wormbook.1.9.1,
  42. Strome S, Wood WB (1982) Immunofluorescence visualization of germ-line-specific cytoplasmic granules in embryos, larvae, and adults of Caenorhabditis elegans. Proc Natl Acad Sci U S A 79:1558–1562CrossRefPubMedGoogle Scholar
  43. Subramaniam K, Seydoux G (1999) nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126:4861–4871PubMedGoogle Scholar
  44. Tanaka SS, Toyooka Y, Akasu R, Katoh-Fukui Y, Nakahara Y, Suzuki R, Yokoyama M, Noce T (2000) The mouse homolog of Drosophila Vasa is required for the development of male germ cells. Genes Dev 14:841–853PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Luis A. Bezares-Calderón
    • 1
  • Arturo Becerra
    • 2
  • Laura S. Salinas
    • 1
  • Ernesto Maldonado
    • 1
  • Rosa E. Navarro
    • 1
  1. 1.Departamento de Biología Celular y Desarrollo, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  2. 2.Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMéxicoMéxico

Personalised recommendations