Development Genes and Evolution

, Volume 220, Issue 1–2, pp 11–24 | Cite as

The expression of wingless and Engrailed in developing embryos of the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae)

Original Article


The expression of the segment polarity genes wingless (wg) and engrailed (en) is highly conserved across arthropods, and these genes play a crucial role in patterning of the segmental body plan. Investigations of the expression and function of wg and en have focused primarily upon holometabolous insects, with the notable exception of recent detailed work in Oncopeltus (Hemiptera), Schistocerca, and Gryllus (Orthoptera). An increase in the phylogenetic breadth of our understanding of molecular patterning is crucial to ascertain the extent of conservation and divergence in molecular patterning mechanisms during insect embryogenesis. We examined the expression of wg mRNA transcripts and localization of En protein during embryogenesis in the mayfly Ephoron leukon (Ephemeroptera: Polymitarcyidae). These data represent one of the first embryonic gene expression pattern data for a mayfly, a lineage that may be the sister group to all other winged insects. Many aspects of wg and En expression are highly conserved, notably their expression in juxtaposed stripes in each parasegment, as well as expression domains in the procephalon, mouthparts, thoracic limbs, and nervous system. Future work in mayflies can be used to determine if conservation extends to other components of the segmentation hierarchy.


Ephoron leukon Wingless Engrailed Mayfly Embryogenesis Segment polarity genes 



Janine Caira and Steve Burian contributed feedback on early drafts, and the comments of two anonymous reviewers greatly improved this manuscript. Karen Ober and Dave Angelini provided critical feedback on troubleshooting protocols for microscopy, in situ hybridization, and protein localization. Special thanks to Karen Ober and Katie Rose Boissonneault for their assistance with imaging of DAPI-stained embryos and to Nipam Patel for generously donating the En4F11 antibody.


  1. Abzhanov A, Kaufman TC (2000) Evolution of distinct expression patterns for engrailed paralogues in higher crustaceans (Malacostraca). Dev Genes Evol 210:493–506CrossRefGoogle Scholar
  2. Anderson DT (1972) The development of hemimetabolous insects. In: Counce SJ, Waddington CH (eds) Developmental systems: insects. Academic, London, pp 96–165Google Scholar
  3. Angelini DR, Kaufman TC (2004) Functional analyses in the hemipteran Oncopeltus fasciatus reveal conserved and derived aspects of appendage patterning in insects. Dev Biol 271:306–321CrossRefPubMedGoogle Scholar
  4. Angelini DR, Kaufman TC (2005a) Functional analyses in the milkweed bug Oncopeltus fasciatus (Hemiptera) support a role for Wnt signaling in body segmentation but not appendage development. Dev Biol 283:409–423CrossRefPubMedGoogle Scholar
  5. Angelini DR, Kaufman TC (2005b) Insect appendages and comparative ontogenetics. Dev Biol 286:57–77CrossRefPubMedGoogle Scholar
  6. Baker NE (1987) Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J 6:1765–1773PubMedGoogle Scholar
  7. Baker NE (1988) Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103:289–298PubMedGoogle Scholar
  8. Bejsovec A, Martinez Arias A (1991) Roles of wingless in patterning the larval epidermis of Drosophila. Development 113:471–485PubMedGoogle Scholar
  9. Bolognesi R, Farzana L, Fischer TD, Brown SJ (2008a) Multiple Wnt genes are required for segmentation in the short-germ embryo of Tribolium castaneum. Curr Biol 18:1624–1629CrossRefPubMedGoogle Scholar
  10. Bolognesi R, Beermann A, Farzana L, Wittkopp N, Lutz R, Balavoine G, Brown SJ, Shroder R (2008b) Tribolium Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. Dev Genes Evol 218:193–202CrossRefPubMedGoogle Scholar
  11. Bonini NM, Leiserson WM, Benzer S (1993) The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395CrossRefPubMedGoogle Scholar
  12. Boyan G, Williams L (2002) A single cell analysis of engrailed expression in the early embryonic brain of the grasshopper Schistocerca gregaria: ontogeny and identity of the secondary head spots. Arth Struct Dev 30:207–218CrossRefGoogle Scholar
  13. Britt NW (1962) Biology of two species of Lake Erie mayflies: Ephoron album and Ephemera simulans. Bull Ohio Biol Surv 1:1–70Google Scholar
  14. Broadus J, Doe CQ (1995) Evolution of neuroblast identity: seven-up and prospero expression reveal homologous and divergent neuroblast fates in Drosophila and Schistocerca. Development 121:3989–3996PubMedGoogle Scholar
  15. Brower D (1986) engrailed gene expression in Drosophila imaginal discs. EMBO J 5:2649–2656PubMedGoogle Scholar
  16. Brower AVZ, DeSalle R (1998) Patterns of mitochondrial versus nuclear DNA sequence divergence among nymphalid butterflies: the utility of wingless as a source of characters for phylogenetic inference. Insect Mol Biol 7:73–82CrossRefPubMedGoogle Scholar
  17. Cheyette BN, Green PJ, Martin K, Garren H, Hartenstein V, Zipursky SL (1994) The Drosophila sine oculis locus encodes a homeodomain-containing protein required for the development of the entire visual system. Neuron 12:977–996CrossRefPubMedGoogle Scholar
  18. Choe CP, Brown SJ (2007) Evolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneum. Dev Biol 302:281–294CrossRefPubMedGoogle Scholar
  19. Choe CP, Brown SJ (2009) Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 325(2):482–491CrossRefPubMedGoogle Scholar
  20. Clifford HF, Hamilton H, Killins BA (1979) Biology of the mayfly Leptophlebia cupida (Say) (Ephemeroptera: Leptophlebiidae). Can J Zool 57:1026–1045CrossRefGoogle Scholar
  21. Coleman KG, Poole SJ, Weir MP, Soeller WC, Kornber T (1987) The invected gene of Drosophila: sequence analysis and expression studies reveal a close kinship to the engrailed gene. Genes Dev 1:19–28CrossRefPubMedGoogle Scholar
  22. Damen WGM (2002) Parasegmental organization of the spider embryo implies that the parasegment is an evolutionary conserved entity in arthropod embryogenesis. Development 129:1239–1250PubMedGoogle Scholar
  23. Damen WGM (2007) Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dynam 236:1379–1391CrossRefGoogle Scholar
  24. Dearden PK, Akam M (2001) Early embryo patterning in the grasshopper, Schistocerca gregaria: wingless, decapentaplegic and caudal expression. Development 128:3435–3444PubMedGoogle Scholar
  25. Desplan C, Theis J, O'Farrell PH (1985) The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature 318:630–635CrossRefPubMedGoogle Scholar
  26. DiNardo S, Kuner JM, Theis J, O'Farrell PH (1985) Development of embryonic pattern in Drosophila melanogaster as revealed by accumulation of the nuclear engrailed protein. Cell 43:59–69CrossRefPubMedGoogle Scholar
  27. Dong Y, Friedrich M (2005) Comparative analysis of Wingless patterning in the embryonic grasshopper eye. Dev Genes Evol 215:177–197CrossRefPubMedGoogle Scholar
  28. Duman-Scheel M, Pirkl N, Patel NH (2002) Analysis of the expression pattern of Mysidium columbiae wingless provides evidence for conserved mesodermal and retinal patterning among insects and crustaceans. Dev Genes Evol 212:114–123CrossRefPubMedGoogle Scholar
  29. Edmunds GF Jr, Nielson LT, Larsen JR (1956) The life history of Ephoron album (Ephemeroptera: Polymitarcidae). Wasmann J Biol 14:145–153Google Scholar
  30. Eriksson BJ, Tait NN, Budd GE, Akam M (2009) The involvement of engrailed and wingless during segmentation in the onychophoran Euperipatoides kanangrensis (Peripatopsidae: Onychophora) (Reid 1996). Dev Genes Evol 219:249–264CrossRefPubMedGoogle Scholar
  31. Fjose A, McGinnis WJ, Gehring WJ (1985) Isolation of a homeobox containing gene from the engrailed region of Drosophila and the spatial distribution of its transcripts. Nature 313:284–289CrossRefPubMedGoogle Scholar
  32. Galant R, Carroll SB (2002) Evolution of a transcriptional repression domain in an insect Hox protein. Nature 415:910–913CrossRefPubMedGoogle Scholar
  33. Giberson DJ, Galloway TD (1985) Life history and production of Ephoron album (Say) (Ephemeroptera: Polymitarcidae) in the Valley River, Manitoba. Can J Zool 63:1668–1674CrossRefGoogle Scholar
  34. Giorgianni MW, Patel NH (2004) Patterning of the branched head appendages in Schistocerca americana and Tribolium castaneum. Evol Dev 6:402–410CrossRefPubMedGoogle Scholar
  35. Greve GD, Van der Geest HG, Stuijfzand SC, Kraak MHS (1999) Development and validation of an ecotoxicity test using field collected eggs of the riverine mayfly Ephoron virgo. Proc Exp Appl Entomol 10:105–112Google Scholar
  36. Gullan PJ, Cranston PS (2005) The insects: an outline of entomology. Wiley-Blackwell, MassachusettsGoogle Scholar
  37. Huang C-Y, Kasai M, Buetow DE (1998) Extremely-rapid RNA detection in dot blots with digoxigenin-labeled RNA probes. Genet Anal Biomol Eng 14:109–112CrossRefGoogle Scholar
  38. Hughes CL, Kaufman TC (2002a) Exploring myriapod segmentation: the expression patterns of even-skipped, engrailed and wingless in a centipede. Dev Biol 247:47–61CrossRefPubMedGoogle Scholar
  39. Hughes CL, Kaufman TC (2002b) Hox genes and the evolution of the arthropod body plan. Evol Dev 4(6):459–499CrossRefPubMedGoogle Scholar
  40. Ingham PW, Hidalgo A (1993) Regulation of wingless transcription in the Drosophila embryo. Development 117:283–291PubMedGoogle Scholar
  41. Janssen R, Prpic N, Damen WGM (2004) Gene expression suggests decoupled dorsal and ventral segmentation in the millipede Glomeris marginata (Myriapoda: Diplopoda). Dev Biol 268:89–104CrossRefPubMedGoogle Scholar
  42. Janssen R, Budd GE, Damen WGM, Prpic N-M (2008) Evidence for Wg-independent tergite boundary formation in the millipede Glomeris marginata. Dev Genes Evol 218:361–370CrossRefPubMedGoogle Scholar
  43. Jenner RA (2006) Unburdening evo–devo: ancestral attractions, model organisms, and basal baloney. Dev Genes Evol 216:385–394CrossRefPubMedGoogle Scholar
  44. Jenner RA, Wills MA (2007) The choice of model organisms in evo–devo. Nature Rev Genet 8:311–319CrossRefPubMedGoogle Scholar
  45. Jockusch EL, Ober KA (2004) Hypothesis testing in evolutionary developmental biology: a case study from insect wings. J Hered 95:382–396CrossRefPubMedGoogle Scholar
  46. Jockusch EL, Williams TA, Nagy LM (2004) The evolution of patterning of serially homologous appendages in insects. Dev Genes Evol 214:324–338CrossRefPubMedGoogle Scholar
  47. Kjer KM (2004) Aligned 18S and insect phylogeny. Syst Biol 53:506–514CrossRefPubMedGoogle Scholar
  48. Klingensmith J, Nusse R (1994) Signaling by wingless in Drosophila. Dev Biol 166:396–414CrossRefPubMedGoogle Scholar
  49. Kornberg T, Siden I, O'Farrell PH, Simon M (1985) The engrailed locus of Drosophila: in situ localization of transcripts reveals compartment-specific expression. Cell 40:45–63CrossRefPubMedGoogle Scholar
  50. Lecuit T, Cohen SM (1997) Proximal–distal axis formation in the Drosophila leg. Nature 388:139–145CrossRefPubMedGoogle Scholar
  51. Liu Z, Yang X, Dong Y, Friedrich M (2006) Tracking down the “head blob”: comparative analysis of wingless expression in the developing insect procephalon reveals progressive reduction of embryonic visual system patterning in higher insects. Arth Struct Dev 35:341–356CrossRefGoogle Scholar
  52. Mahfooz NS, Li H, Popadic A (2004) Differential expression patterns of the hox genes are associated with differential growth of insect hind legs. PNAS 101:4877–4882CrossRefPubMedGoogle Scholar
  53. Marie B, Bacon JP (2000) Two engrailed-related genes in the cockroach: cloning, phylogenetic analysis, expression and isolation of splice variants. Dev Genes Evol 210:436–448CrossRefPubMedGoogle Scholar
  54. McCafferty WP (1975) The burrowing mayflies of the United States (Ephemeroptera: Ephemeroidea). Trans Am Entomol Soc 101(3):447–504Google Scholar
  55. Miyawaki K, Mito T, Sarashina I, Zhang H, Shinmyo Y, Ohuchi H, Noji S (2004) Involvement of Wingless/Armadillo signaling in the posterior sequential segmentation in the cricket, Gryllus bimaculatus (Orthoptera), as revealed by RNAi analysis. Mech Dev 121:119–130CrossRefPubMedGoogle Scholar
  56. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acids Res 8:4321–4325CrossRefPubMedGoogle Scholar
  57. Nagy LM, Carroll S (1994) Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum. Nature 367:460–463CrossRefPubMedGoogle Scholar
  58. Needham JG, Traver JR, Hsu YC (1935) The biology of mayflies with a systematic account of North American species. Comstock, New YorkGoogle Scholar
  59. Niwa N, Inoue Y, Nozawa A, Saito M, Misumi Y, Ohuchi H, Yoshioka H, Noji S (2000) Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127:4373–4381PubMedGoogle Scholar
  60. Niwa N, Akimoto-Kato A, Niimi T, Tojo K, Machida R, Hayashi S (2010) Evolutionary origin of the insect wing via integration of two developmental modules. Evol Dev 12:168–176PubMedCrossRefGoogle Scholar
  61. Nulsen C, Nagy LM (1999) The role of wingless in the development of multibranched crustacean limbs. Dev Genes Evol 209:340–348CrossRefPubMedGoogle Scholar
  62. Nusse R, Varmus HE (1992) Wnt genes. Cell 69:1073–1087CrossRefPubMedGoogle Scholar
  63. Nüsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801CrossRefPubMedGoogle Scholar
  64. O’Donnell BC (2009) Early nymphal development in Ephoron leukon (Ephemeroptera: Polymitarcyidae) with particular emphasis on mouthparts and abdominal gills. Ann Entomol Soc Am 102(1):128–136CrossRefGoogle Scholar
  65. Ober KA, Jockusch EL (2006) The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum. Dev Biol 294:391–405CrossRefPubMedGoogle Scholar
  66. Ohde T, Masumoto M, Yaginuma T, Niimi T (2009) Embryonic RNAi analysis in the firebrat, Thermobia domestica: Distal-less is required to form caudal filament. J Insect Biotechnol Sericology 78:99–105Google Scholar
  67. Oppenheimer DI, MacNicol AM, Patel NH (1999) Functional conservation of the wingless-engrailed interaction as shown by a widely applicable baculovirus misexpression system. Curr Biol 9:1288–1296CrossRefPubMedGoogle Scholar
  68. Panganiban G, Sebring A, Nagy L, Carroll S (1995) The development of crustacean limbs and the evolution of arthropods. Science 270:1363–1366CrossRefPubMedGoogle Scholar
  69. Papillon D, Telford MF (2007) Evolution of Hox3 and ftz in arthropods: insights from the crustacean Daphnia pulex. Dev Genes Evol 4:315–322CrossRefGoogle Scholar
  70. Patel NH, Martin-Blanco E, Coleman KG, Poole SJ, Ellis MC, Kornberg TB, Goodman CS (1989) Expression of engrailed proteins in arthropods, annelids and chordates. Cell 58:955–968CrossRefPubMedGoogle Scholar
  71. Peel AD, Telford ML, Akam M (2006) The evolution of hexapod engrailed-family genes: evidence for conservation and concerted evolution. Proc R Soc B 273:1733–1742CrossRefPubMedGoogle Scholar
  72. Peterson MD, Popadic A, Kaufman TC (1998) The expression of two engrailed-related genes in an apterygote insect and a phylogenetic analysis of insect engrailed-related genes. Dev Genes Evol 208:547–557CrossRefPubMedGoogle Scholar
  73. Prpic N (2004) Homologs of wingless and decapentaplegic display a complex and dynamic expression profile during appendage development in the millipede Glomeris marginata (Myriapoda: Diplopoda). Front Zool 1:1–12CrossRefGoogle Scholar
  74. Prud’homme B, de Rosa R, Arendt D, Julien J-F, Pajaziti R, Dorresteijn AWC, Adoutte A, Wittbrodt J, Balavoine G (2003) Arthropod-like expression patterns of engrailed and wingless in the annelid Platynereis dumerilii suggest a role in segment formation. Curr Biol 13:1876–1881CrossRefPubMedGoogle Scholar
  75. Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. PNAS 105(43):16614–16619CrossRefPubMedGoogle Scholar
  76. Quiring R, Walldorf U, Kloter U, Gehring WJ (1994) Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265:785–789CrossRefPubMedGoogle Scholar
  77. Regier JC, Shultz JW, Swick A, Hussey A, Ball B, Wetzer R, Martin JW, Cunningham CW (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083CrossRefPubMedGoogle Scholar
  78. Rogers BT, Kaufman TC (1996) Structure of the insect head as revealed by the EN protein pattern in developing embryos. Development 122:3419–3432PubMedGoogle Scholar
  79. Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917CrossRefPubMedGoogle Scholar
  80. Schmidt-Ott U, Technau GM (1992) Expression of en and wg in the embryonic head and brain of Drosophila indicates a refolded band of seven segment remnants. Development 116:111–125PubMedGoogle Scholar
  81. Serrano N, Brock HW, Demeret C, Dura J-M, Randsholt NB, Kornberg TB, Maschat F (1995) polyhomeotic appears to be a target of Engrailed regulation in Drosophila. Development 121:1691–1703PubMedGoogle Scholar
  82. Siegler MVS, Pankhaniya RR, Jia XX (2001) Pattern of expression of engrailed in relation to gamma-aminobutyric acid immunoreactivity in the central nervous system of the adult grasshopper. J Comp Neurol 440:85–96CrossRefPubMedGoogle Scholar
  83. Simon S, Strauss S, von Haeseler A, Hadrys H (2009) A phylogenomic approach to resolve the basal pterygote divergence. Mol Biol Evol 26:2719–2730CrossRefPubMedGoogle Scholar
  84. Sintoni S, Fabritius-Vilpous K, Harzsch S (2007) The Engrailed-expressing secondary head spots in the embryonic crayfish brain: examples for a group of homologous neurons in Crustacea and Hexapoda? Dev Genes Evol 217:791–799CrossRefPubMedGoogle Scholar
  85. Snyder CD, Willis LD, Hendricks AC (1991) Spatial and temporal variation in the growth and production of Ephoron leukon (Ephemeroptera: Polymitarcyidae). JN Am Benthol Soc 10:57–67CrossRefGoogle Scholar
  86. Sommer RJ (2009) The future of evo–devo: model systems and evolutionary theory. Nature Rev Genet 10:416–422PubMedGoogle Scholar
  87. Stollewerk A, Schoppmeier M, Damen WG (2003) Involvement of Notch and Delta genes in spider segmentation. Nature 423:863–865CrossRefPubMedGoogle Scholar
  88. Tojo K, Machida R (1997) Embryogenesis of the mayfly Ephemera japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae), with special reference to abdominal formation. J Morphol 234:97–107CrossRefGoogle Scholar
  89. Tojo K, Machida R (1999) Early embryonic development of the mayfly Ephemera japonica McLachlan (Insecta: Ephemeroptera, Ephemeridae). J Morphol 238:327–335CrossRefGoogle Scholar
  90. Travis J (2006) Is it what we know or who we know? Choice of organism and robustness of inference in ecology and evolutionary biology. Am Nat 167:303–314CrossRefPubMedGoogle Scholar
  91. Tsui PTP, Peters WL (1974) Embryonic development, early instar morphology, and behavior of Tortopus incertus (Ephemeroptera: Polymitarcidae). Fla Entomol 57(4):349–356CrossRefGoogle Scholar
  92. Watanabe NC (1998) Geographical variation in Japan in egg development of the mayfly, Ephoron shigae (Ephemeroptera: Polymitarcyidae). Freshwater Biol 40:245–254CrossRefGoogle Scholar
  93. Watanabe NC, Ohkita A (2000) Life cycle and synchronization of nymphal development of the mayfly Ephoron shigae in Japan (Ephemeroptera: Polymitarcyidae). Aquat Insects 22:108–121CrossRefGoogle Scholar
  94. Watanabe NC, Takao S (1991) Effect of a low temperature period on the egg hatching of the Japanese burrowing mayfly, Ephoron shigae. In: Alba-Tercedor J, Sánchez-Ortega A (eds) Overview and strategies of Ephemeroptera and Plecoptera. Sandhill Crane Press, Florida, pp 439–445Google Scholar
  95. Williams TA, Nagy LM (1996) Comparative limb development in insects and crustaceans. Semin Cell Dev Biol 7:615–628CrossRefGoogle Scholar
  96. Willman R (2004) Phylogenetic relationships and evolution of insects. In: Cracraft J, Donoghue MJ (eds) Assembling the tree of life. Oxford University Press, New York, pp 330–344Google Scholar
  97. Zecca M, Basler K, Struhl G (1995) Sequential organizing activities of engrailed, hedgehog and decapentaplegic in the Drosophila wing. Development 121:2265–2278PubMedGoogle Scholar
  98. Zhang J, Zhou C, Gai Y, Song D, Zhou K (2008) The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and the phylogenetic position of the Ephemeroptera. Gene 424:18–24CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Brigid C. O’Donnell
    • 1
    • 2
  • Elizabeth L. Jockusch
    • 1
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ConnecticutStorrsUSA
  2. 2.Department of Biological SciencesPlymouth State UniversityPlymouthUSA

Personalised recommendations